import os import cv2 import numpy as np import gradio as gr from PIL import Image import tensorflow as tf # model = tf.keras.models.Sequential([ # tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)), # tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'), # tf.keras.layers.BatchNormalization(), # tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), # tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), # tf.keras.layers.BatchNormalization(), # tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), # tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), # tf.keras.layers.BatchNormalization(), # tf.keras.layers.GlobalAveragePooling2D(), # tf.keras.layers.Dense(10, activation='softmax') # ]) # model.compile(optimizer=tf.keras.optimizers.Adam(), # loss=tf.keras.losses.CategoricalCrossentropy(), # metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()]) # model.load_model("my_model.keras") # def image_mod(image): # # img = Image.fromarray(image['composite']) # model = tf.keras.models.load_model('weights_1.h5') # test_img = np.array(image['composite']).reshape(1, 28, 28, 1) # # test_img = cv2.resize(np.array(image['composite']), (28, 28, 1)) # prediction = model.predict(test_img) # pred = np.argmax(prediction, axis=1)[0] # return pred # title = "Draw to Search" # description = "Using the power of AI to detect the number you draw!" # demo = gr.Interface( # fn=image_mod, # inputs='sketchpad', # outputs='text', # title=title, # description=description, # live=True) # demo.launch(share=False) # demo.launch(debug=True) model = tf.keras.models.Sequential([ tf.keras.layers.Input(shape=(28, 28, 1)), tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()]) model = tf.keras.models.load_model('my_model.h5') def classify_image(image): if len(np.array(image).shape) == 3: image = tf.image.rgb_to_grayscale(image) image_tensor = tf.convert_to_tensor(image) image_tensor = tf.cast(image_tensor, tf.float32) image_tensor = tf.expand_dims(image_tensor, 0) image_tensor = image_tensor / 255.0 prediction = model.predict(image_tensor) prediction_label = str(prediction.argmax()) return prediction_label title = "Draw to Search" description = "Using the power of AI to detect the number you draw!" article = "for source code you can visit [my github](https://github.com/mralamdari)" example_list = [["examples/" + example] for example in os.listdir("examples")] interface = gr.Interface(fn=classify_image, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=3, label="Predictions"), examples=example_list, title=title, description=description, article=article) interface.launch()