Spaces:
Runtime error
Runtime error
Commit
·
f49fa5d
1
Parent(s):
9a08d18
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import gradio as gr
|
4 |
import tensorflow as tf
|
5 |
|
6 |
-
|
7 |
model = tf.keras.models.Sequential([
|
8 |
tf.keras.layers.Input(shape=(28, 28, 1)),
|
9 |
tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)),
|
@@ -24,35 +24,20 @@ model.compile(optimizer=tf.keras.optimizers.Adam(),
|
|
24 |
metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()])
|
25 |
|
26 |
model = tf.keras.models.load_model('my_model.h5', compile=False)
|
27 |
-
|
28 |
|
29 |
def classify_image(image):
|
30 |
image = np.array(image['composite'])[:, :, 3] * 255
|
31 |
image = image[..., np.newaxis]
|
32 |
-
# if len(image.shape) >= 3:
|
33 |
-
# image = tf.image.rgb_to_grayscale(image)
|
34 |
-
|
35 |
image_tensor = tf.convert_to_tensor(image)
|
36 |
-
|
37 |
image_tensor = tf.image.resize(image_tensor, (28, 28)),
|
38 |
-
# print(1111111111111111111111111111111111111111111)
|
39 |
-
# print(image_tensor.shape)
|
40 |
-
|
41 |
image_tensor = tf.cast(image_tensor, tf.float32)
|
42 |
-
print(1111111111111111111111111111111111111111111)
|
43 |
-
# print(image_tensor.shape)
|
44 |
-
|
45 |
-
# image_tensor = tf.expand_dims(image_tensor, 0)
|
46 |
image_tensor = image_tensor / 255.0
|
47 |
-
print(1111111111111111111111111111111111111111111)
|
48 |
-
# print(image_tensor.shape)
|
49 |
-
|
50 |
prediction = model.predict(image_tensor)
|
|
|
|
|
51 |
|
52 |
-
print(1111111111111111111111111111111111111111111)
|
53 |
prediction_label = str(prediction.argmax())
|
54 |
-
print(1111111111111111111111111111111111111111111)
|
55 |
-
|
56 |
return prediction_label
|
57 |
|
58 |
|
@@ -60,51 +45,19 @@ title = "Draw to Search"
|
|
60 |
description = "Using the power of AI to detect the number you draw!"
|
61 |
article = "for source code you can visit [my github](https://github.com/mralamdari)"
|
62 |
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
interface = gr.Interface(fn=classify_image,
|
|
|
66 |
inputs=gr.Sketchpad(),
|
67 |
-
outputs=
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
# outputs='text',
|
74 |
-
# examples=example_list,
|
75 |
-
# title=title,
|
76 |
-
# description=description,
|
77 |
-
# article=article)
|
78 |
|
79 |
-
interface.launch()
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
# import gradio as gr
|
85 |
-
# # from PIL import Image
|
86 |
-
|
87 |
-
# def predict(img):
|
88 |
-
# print(img)
|
89 |
-
# print(11111111111111111111111111111)
|
90 |
-
# print(np.unique(np.array(img['composite'])[:, :, 0], return_counts=True))
|
91 |
-
|
92 |
-
# print(11111111111111111111111111111)
|
93 |
-
# print(np.unique(np.array(img['composite'])[:, :, 1], return_counts=True))
|
94 |
-
|
95 |
-
# print(11111111111111111111111111111)
|
96 |
-
# print(np.unique(np.array(img['composite'])[:, :, 2], return_counts=True))
|
97 |
-
|
98 |
-
# print(11111111111111111111111111111)
|
99 |
-
# print(np.unique(np.array(img['composite'])[:, :, 3], return_counts=True))
|
100 |
-
# img = np.array(img['composite'])[:, :, 3] * 255
|
101 |
-
# print(img)
|
102 |
-
# # print(np.squeeze(np.array(img['composite']), axis=-1))
|
103 |
-
# return img
|
104 |
-
|
105 |
-
# sp = gr.Sketchpad()
|
106 |
-
|
107 |
-
# gr.Interface(fn=predict,
|
108 |
-
# inputs=sp,
|
109 |
-
# outputs='image',
|
110 |
-
# live=True).launch()
|
|
|
3 |
import gradio as gr
|
4 |
import tensorflow as tf
|
5 |
|
6 |
+
|
7 |
model = tf.keras.models.Sequential([
|
8 |
tf.keras.layers.Input(shape=(28, 28, 1)),
|
9 |
tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)),
|
|
|
24 |
metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()])
|
25 |
|
26 |
model = tf.keras.models.load_model('my_model.h5', compile=False)
|
27 |
+
|
28 |
|
29 |
def classify_image(image):
|
30 |
image = np.array(image['composite'])[:, :, 3] * 255
|
31 |
image = image[..., np.newaxis]
|
|
|
|
|
|
|
32 |
image_tensor = tf.convert_to_tensor(image)
|
|
|
33 |
image_tensor = tf.image.resize(image_tensor, (28, 28)),
|
|
|
|
|
|
|
34 |
image_tensor = tf.cast(image_tensor, tf.float32)
|
|
|
|
|
|
|
|
|
35 |
image_tensor = image_tensor / 255.0
|
|
|
|
|
|
|
36 |
prediction = model.predict(image_tensor)
|
37 |
+
print(prediction)
|
38 |
+
print(prediction.argmax)
|
39 |
|
|
|
40 |
prediction_label = str(prediction.argmax())
|
|
|
|
|
41 |
return prediction_label
|
42 |
|
43 |
|
|
|
45 |
description = "Using the power of AI to detect the number you draw!"
|
46 |
article = "for source code you can visit [my github](https://github.com/mralamdari)"
|
47 |
|
48 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
49 |
+
# interface = gr.Interface(fn=classify_image,
|
50 |
+
# inputs=gr.Sketchpad(),
|
51 |
+
# outputs='text')
|
52 |
|
53 |
interface = gr.Interface(fn=classify_image,
|
54 |
+
# inputs=gr.Image(type="pil"),
|
55 |
inputs=gr.Sketchpad(),
|
56 |
+
# outputs=gr.Label(num_top_classes=3, label="Predictions"),
|
57 |
+
outputs='text',
|
58 |
+
examples=example_list,
|
59 |
+
title=title,
|
60 |
+
description=description,
|
61 |
+
article=article)
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|