Spaces:
Runtime error
Runtime error
Commit
·
11c183d
1
Parent(s):
a44cc01
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
-
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
from PIL import Image
|
6 |
-
import tensorflow as tf
|
7 |
|
8 |
# model = tf.keras.models.Sequential([
|
|
|
9 |
# tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)),
|
10 |
# tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'),
|
11 |
# tf.keras.layers.BatchNormalization(),
|
@@ -23,33 +22,46 @@ import tensorflow as tf
|
|
23 |
# loss=tf.keras.losses.CategoricalCrossentropy(),
|
24 |
# metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()])
|
25 |
|
26 |
-
# model.load_model(
|
27 |
|
28 |
-
|
29 |
-
#
|
30 |
-
|
31 |
-
#
|
32 |
-
#
|
33 |
-
#
|
34 |
-
# #
|
35 |
-
#
|
36 |
-
#
|
37 |
-
#
|
|
|
38 |
|
39 |
|
40 |
# title = "Draw to Search"
|
41 |
# description = "Using the power of AI to detect the number you draw!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
# demo = gr.Interface(
|
44 |
-
# fn=image_mod,
|
45 |
-
# inputs='sketchpad',
|
46 |
-
# outputs='text',
|
47 |
-
# title=title,
|
48 |
-
# description=description,
|
49 |
-
# live=True)
|
50 |
|
51 |
-
# demo.launch(share=False)
|
52 |
-
# demo.launch(debug=True)
|
53 |
|
54 |
|
55 |
|
@@ -73,28 +85,26 @@ import tensorflow as tf
|
|
73 |
|
74 |
|
75 |
|
76 |
-
model = tf.keras.models.Sequential([
|
77 |
-
tf.keras.layers.Input(shape=(28, 28, 1)),
|
78 |
-
tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)),
|
79 |
-
tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'),
|
80 |
-
tf.keras.layers.BatchNormalization(),
|
81 |
-
tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'),
|
82 |
-
tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'),
|
83 |
-
tf.keras.layers.BatchNormalization(),
|
84 |
-
tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'),
|
85 |
-
tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'),
|
86 |
-
tf.keras.layers.BatchNormalization(),
|
87 |
-
tf.keras.layers.GlobalAveragePooling2D(),
|
88 |
-
tf.keras.layers.Dense(10, activation='softmax')
|
89 |
-
])
|
90 |
|
91 |
-
model.compile(optimizer=tf.keras.optimizers.Adam(),
|
92 |
-
loss=tf.keras.losses.CategoricalCrossentropy(),
|
93 |
-
metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()])
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
def classify_image(image):
|
|
|
|
|
|
|
98 |
if len(np.array(image).shape) == 3:
|
99 |
image = tf.image.rgb_to_grayscale(image)
|
100 |
image_tensor = tf.convert_to_tensor(image)
|
@@ -114,8 +124,8 @@ article = "for source code you can visit [my github](https://github.com/mralamda
|
|
114 |
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
115 |
|
116 |
interface = gr.Interface(fn=classify_image,
|
117 |
-
inputs=gr.Image(type="pil"),
|
118 |
-
|
119 |
outputs=gr.Label(num_top_classes=3, label="Predictions"),
|
120 |
examples=example_list,
|
121 |
title=title,
|
|
|
1 |
+
# import os
|
2 |
+
# import numpy as np
|
3 |
+
# import gradio as gr
|
4 |
+
# import tensorflow as tf
|
|
|
|
|
5 |
|
6 |
# model = tf.keras.models.Sequential([
|
7 |
+
# tf.keras.layers.Input(shape=(28, 28, 1)),
|
8 |
# tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)),
|
9 |
# tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'),
|
10 |
# tf.keras.layers.BatchNormalization(),
|
|
|
22 |
# loss=tf.keras.losses.CategoricalCrossentropy(),
|
23 |
# metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()])
|
24 |
|
25 |
+
# model = tf.keras.models.load_model('my_model.h5', compile=False)
|
26 |
|
27 |
+
# def classify_image(image):
|
28 |
+
# if len(np.array(image).shape) == 3:
|
29 |
+
# image = tf.image.rgb_to_grayscale(image)
|
30 |
+
# image_tensor = tf.convert_to_tensor(image)
|
31 |
+
# image_tensor = tf.image.resize(image_tensor, (28, 28)),
|
32 |
+
# image_tensor = tf.cast(image_tensor, tf.float32)
|
33 |
+
# # image_tensor = tf.expand_dims(image_tensor, 0)
|
34 |
+
# image_tensor = image_tensor / 255.0
|
35 |
+
# prediction = model.predict(image_tensor)
|
36 |
+
# prediction_label = str(prediction.argmax())
|
37 |
+
# return prediction_label
|
38 |
|
39 |
|
40 |
# title = "Draw to Search"
|
41 |
# description = "Using the power of AI to detect the number you draw!"
|
42 |
+
# article = "for source code you can visit [my github](https://github.com/mralamdari)"
|
43 |
+
|
44 |
+
# example_list = [["examples/" + example] for example in os.listdir("examples")]
|
45 |
+
|
46 |
+
# interface = gr.Interface(fn=classify_image,
|
47 |
+
# inputs=gr.Image(type="pil"),
|
48 |
+
# # inputs='sketchpad',
|
49 |
+
# outputs=gr.Label(num_top_classes=3, label="Predictions"),
|
50 |
+
# examples=example_list,
|
51 |
+
# title=title,
|
52 |
+
# description=description,
|
53 |
+
# article=article)
|
54 |
+
|
55 |
+
# interface.launch()
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
|
|
|
|
65 |
|
66 |
|
67 |
|
|
|
85 |
|
86 |
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
|
|
|
|
|
|
89 |
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
import os
|
100 |
+
import numpy as np
|
101 |
+
import gradio as gr
|
102 |
+
import tensorflow as tf
|
103 |
|
104 |
def classify_image(image):
|
105 |
+
print(type(image))
|
106 |
+
print(image)
|
107 |
+
print(np.array(image).shape)
|
108 |
if len(np.array(image).shape) == 3:
|
109 |
image = tf.image.rgb_to_grayscale(image)
|
110 |
image_tensor = tf.convert_to_tensor(image)
|
|
|
124 |
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
125 |
|
126 |
interface = gr.Interface(fn=classify_image,
|
127 |
+
# inputs=gr.Image(type="pil"),
|
128 |
+
inputs='sketchpad',
|
129 |
outputs=gr.Label(num_top_classes=3, label="Predictions"),
|
130 |
examples=example_list,
|
131 |
title=title,
|