Spaces:
Runtime error
Runtime error
Commit
·
0e7f880
1
Parent(s):
acb820c
Delete my_classifier.py
Browse files- my_classifier.py +0 -88
my_classifier.py
DELETED
@@ -1,88 +0,0 @@
|
|
1 |
-
import tensorflow as tf
|
2 |
-
from tensorflow import keras
|
3 |
-
from tensorflow.keras import layers
|
4 |
-
import numpy as np
|
5 |
-
import cv2
|
6 |
-
|
7 |
-
|
8 |
-
class ImageClassifier:
|
9 |
-
def __init__(self):
|
10 |
-
self.model = None
|
11 |
-
|
12 |
-
def preprocess_image(self, image):
|
13 |
-
# Resize the image to (32, 32)
|
14 |
-
resized_image = cv2.resize(image, (28, 28, 1))
|
15 |
-
|
16 |
-
# # Convert the image to grayscale
|
17 |
-
# gray_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)
|
18 |
-
|
19 |
-
# # # Normalize the pixel values between 0 and 1
|
20 |
-
# normalized_image = gray_image.astype("float32") / 255.0
|
21 |
-
|
22 |
-
# # # Transpose the dimensions to match the model's input shape
|
23 |
-
# transposed_image = np.transpose(normalized_image, (1, 2, 0))
|
24 |
-
|
25 |
-
# # # Expand dimensions to match model input shape (add batch dimension)
|
26 |
-
# img_array = np.expand_dims(transposed_image, axis=0)
|
27 |
-
return resized_image
|
28 |
-
|
29 |
-
def load_dataset(self):
|
30 |
-
# Set up the dataset
|
31 |
-
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
|
32 |
-
|
33 |
-
# Normalize pixel values between 0 and 1
|
34 |
-
x_train = x_train.astype("float32") / 255.0
|
35 |
-
x_test = x_test.astype("float32") / 255.0
|
36 |
-
|
37 |
-
return (x_train, y_train), (x_test, y_test)
|
38 |
-
|
39 |
-
def build_model(self, x_train):
|
40 |
-
# Define the model architecture
|
41 |
-
model = tf.keras.models.Sequential([
|
42 |
-
tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)),
|
43 |
-
tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'),
|
44 |
-
tf.keras.layers.BatchNormalization(),
|
45 |
-
tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'),
|
46 |
-
tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'),
|
47 |
-
tf.keras.layers.BatchNormalization(),
|
48 |
-
tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'),
|
49 |
-
tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'),
|
50 |
-
tf.keras.layers.BatchNormalization(),
|
51 |
-
tf.keras.layers.GlobalAveragePooling2D(),
|
52 |
-
tf.keras.layers.Dense(10, activation='softmax')
|
53 |
-
])
|
54 |
-
|
55 |
-
# Compile the model
|
56 |
-
optimizer = keras.optimizers.RMSprop(learning_rate=0.001)
|
57 |
-
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
|
58 |
-
|
59 |
-
self.model = model
|
60 |
-
|
61 |
-
def train_model(self, x_train, y_train, batch_size, epochs, validation_split):
|
62 |
-
# Train the model
|
63 |
-
self.model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_split=validation_split)
|
64 |
-
|
65 |
-
def evaluate_model(self, x_test, y_test):
|
66 |
-
# Evaluate the model on the test set
|
67 |
-
score = self.model.evaluate(x_test, y_test, verbose=0)
|
68 |
-
print("Test loss:", score[0])
|
69 |
-
print("Test accuracy:", score[1])
|
70 |
-
|
71 |
-
def save_model(self, filepath):
|
72 |
-
# Save the trained model
|
73 |
-
self.model.save(filepath)
|
74 |
-
|
75 |
-
def load_model(self, filepath):
|
76 |
-
# Load the trained model
|
77 |
-
self.model = keras.models.load_model(filepath)
|
78 |
-
|
79 |
-
def classify_image(self, image, top_k=3):
|
80 |
-
# Preprocess the image
|
81 |
-
preprocessed_image = self.preprocess_image(image)
|
82 |
-
|
83 |
-
# Perform inference
|
84 |
-
predicted_probs = self.model.predict(np.array([preprocessed_image]))
|
85 |
-
top_classes = np.argsort(predicted_probs[0])[-top_k:][::-1]
|
86 |
-
top_probs = predicted_probs[0][top_classes]
|
87 |
-
|
88 |
-
return top_classes, top_probs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|