Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
import tensorflow as tf | |
# model = tf.keras.models.Sequential([ | |
# tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)), | |
# tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'), | |
# tf.keras.layers.BatchNormalization(), | |
# tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), | |
# tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), | |
# tf.keras.layers.BatchNormalization(), | |
# tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), | |
# tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), | |
# tf.keras.layers.BatchNormalization(), | |
# tf.keras.layers.GlobalAveragePooling2D(), | |
# tf.keras.layers.Dense(10, activation='softmax') | |
# ]) | |
# model.compile(optimizer=tf.keras.optimizers.Adam(), | |
# loss=tf.keras.losses.CategoricalCrossentropy(), | |
# metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()]) | |
# model.load_model("my_model.keras") | |
def image_mod(image): | |
# img = Image.fromarray(image['composite']) | |
model = tf.keras.models.load_model('weights_1.h5') | |
test_img = np.array(image['composite']).reshape(1, 28, 28, 1) | |
# test_img = cv2.resize(np.array(image['composite']), (28, 28, 1)) | |
prediction = model.predict(test_img) | |
pred = np.argmax(prediction, axis=1)[0] | |
return pred | |
title = "Draw to Search" | |
description = "Using the power of AI to detect the number you draw!" | |
demo = gr.Interface( | |
fn=image_mod, | |
inputs='sketchpad', | |
outputs='text', | |
title=title, | |
description=description, | |
live=True) | |
demo.launch(share=False) | |
# demo.launch(debug=True) |