mralamdari's picture
Update app.py
88f711a
raw
history blame
4.35 kB
import os
import cv2
import numpy as np
import gradio as gr
from PIL import Image
import tensorflow as tf
# model = tf.keras.models.Sequential([
# tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)),
# tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'),
# tf.keras.layers.BatchNormalization(),
# tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'),
# tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'),
# tf.keras.layers.BatchNormalization(),
# tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'),
# tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'),
# tf.keras.layers.BatchNormalization(),
# tf.keras.layers.GlobalAveragePooling2D(),
# tf.keras.layers.Dense(10, activation='softmax')
# ])
# model.compile(optimizer=tf.keras.optimizers.Adam(),
# loss=tf.keras.losses.CategoricalCrossentropy(),
# metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()])
# model.load_model("my_model.keras")
# def image_mod(image):
# # img = Image.fromarray(image['composite'])
# model = tf.keras.models.load_model('weights_1.h5')
# test_img = np.array(image['composite']).reshape(1, 28, 28, 1)
# # test_img = cv2.resize(np.array(image['composite']), (28, 28, 1))
# prediction = model.predict(test_img)
# pred = np.argmax(prediction, axis=1)[0]
# return pred
# title = "Draw to Search"
# description = "Using the power of AI to detect the number you draw!"
# demo = gr.Interface(
# fn=image_mod,
# inputs='sketchpad',
# outputs='text',
# title=title,
# description=description,
# live=True)
# demo.launch(share=False)
# demo.launch(debug=True)
model = tf.keras.models.Sequential([
tf.keras.layers.Input(shape=(28, 28, 1)),
tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'),
tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'),
tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()])
model = tf.keras.models.load_model('my_model.h5')
def classify_image(image):
if len(np.array(image).shape) == 3:
image = tf.image.rgb_to_grayscale(image)
image_tensor = tf.convert_to_tensor(image)
image_tensor = tf.cast(image_tensor, tf.float32)
image_tensor = tf.expand_dims(image_tensor, 0)
image_tensor = image_tensor / 255.0
prediction = model.predict(image_tensor)
prediction_label = str(prediction.argmax())
return prediction_label
title = "Draw to Search"
description = "Using the power of AI to detect the number you draw!"
article = "for source code you can visit [my github](https://github.com/mralamdari)"
example_list = [["examples/" + example] for example in os.listdir("examples")]
interface = gr.Interface(fn=classify_image,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=3, label="Predictions"),
examples=example_list,
title=title,
description=description,
article=article)
interface.launch()