Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
import tensorflow as tf | |
# model = tf.keras.models.Sequential([ | |
# tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)), | |
# tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'), | |
# tf.keras.layers.BatchNormalization(), | |
# tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), | |
# tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), | |
# tf.keras.layers.BatchNormalization(), | |
# tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), | |
# tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), | |
# tf.keras.layers.BatchNormalization(), | |
# tf.keras.layers.GlobalAveragePooling2D(), | |
# tf.keras.layers.Dense(10, activation='softmax') | |
# ]) | |
# model.compile(optimizer=tf.keras.optimizers.Adam(), | |
# loss=tf.keras.losses.CategoricalCrossentropy(), | |
# metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()]) | |
# model.load_model("my_model.keras") | |
# def image_mod(image): | |
# # img = Image.fromarray(image['composite']) | |
# model = tf.keras.models.load_model('weights_1.h5') | |
# test_img = np.array(image['composite']).reshape(1, 28, 28, 1) | |
# # test_img = cv2.resize(np.array(image['composite']), (28, 28, 1)) | |
# prediction = model.predict(test_img) | |
# pred = np.argmax(prediction, axis=1)[0] | |
# return pred | |
# title = "Draw to Search" | |
# description = "Using the power of AI to detect the number you draw!" | |
# demo = gr.Interface( | |
# fn=image_mod, | |
# inputs='sketchpad', | |
# outputs='text', | |
# title=title, | |
# description=description, | |
# live=True) | |
# demo.launch(share=False) | |
# demo.launch(debug=True) | |
model = tf.keras.models.Sequential([ | |
tf.keras.layers.Input(shape=(28, 28, 1)), | |
tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu', input_shape=(28, 28, 1)), | |
tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=1, padding='same', activation='relu'), | |
tf.keras.layers.BatchNormalization(), | |
tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), | |
tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu'), | |
tf.keras.layers.BatchNormalization(), | |
tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), | |
tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=2, padding='same', activation='relu'), | |
tf.keras.layers.BatchNormalization(), | |
tf.keras.layers.GlobalAveragePooling2D(), | |
tf.keras.layers.Dense(10, activation='softmax') | |
]) | |
model.compile(optimizer=tf.keras.optimizers.Adam(), | |
loss=tf.keras.losses.CategoricalCrossentropy(), | |
metrics=[tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.AUC(), tf.keras.metrics.CategoricalAccuracy()]) | |
model = tf.keras.models.load_model('my_model.h5') | |
def classify_image(image): | |
if len(np.array(image).shape) == 3: | |
image = tf.image.rgb_to_grayscale(image) | |
image_tensor = tf.convert_to_tensor(image) | |
image_tensor = tf.cast(image_tensor, tf.float32) | |
image_tensor = tf.expand_dims(image_tensor, 0) | |
image_tensor = image_tensor / 255.0 | |
prediction = model.predict(image_tensor) | |
prediction_label = str(prediction.argmax()) | |
return prediction_label | |
title = "Draw to Search" | |
description = "Using the power of AI to detect the number you draw!" | |
article = "for source code you can visit [my github](https://github.com/mralamdari)" | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
interface = gr.Interface(fn=classify_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=3, label="Predictions"), | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
interface.launch() |