Spaces:
Running
Running
Vokturz
commited on
Commit
·
e8be103
1
Parent(s):
fddae32
solve a minor bug
Browse files- src/app.py +16 -14
src/app.py
CHANGED
@@ -52,6 +52,19 @@ def get_name(index):
|
|
52 |
|
53 |
gpu_specs = get_gpu_specs()
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
access_token = st.sidebar.text_input("Access token")
|
56 |
model_name = st.sidebar.text_input("Model name", value="mistralai/Mistral-7B-v0.1")
|
57 |
if not model_name:
|
@@ -84,6 +97,9 @@ min_ram = gpu_info['RAM (GB)'].min()
|
|
84 |
max_ram = gpu_info['RAM (GB)'].max()
|
85 |
ram = st.sidebar.slider("Filter by RAM (GB)", min_ram, max_ram, (10.0, 40.0), step=0.5)
|
86 |
gpu_info = gpu_info[gpu_info["RAM (GB)"].between(ram[0], ram[1])]
|
|
|
|
|
|
|
87 |
gpu = st.sidebar.selectbox("GPU", gpu_info['Product Name'].index.tolist(), format_func=lambda x : gpu_specs.iloc[x]['Product Name'])
|
88 |
gpu_spec = gpu_specs.iloc[gpu]
|
89 |
gpu_spec.name = 'INFO'
|
@@ -95,20 +111,6 @@ st.sidebar.dataframe(gpu_spec.T.astype(str))
|
|
95 |
memory_table = pd.DataFrame(st.session_state[model_name]).set_index('dtype')
|
96 |
memory_table['LoRA Fine-Tuning (GB)'] = (memory_table["Total Size (GB)"] +
|
97 |
(memory_table["Parameters (Billion)"]* lora_pct/100 * (16/8)*4)) * 1.2
|
98 |
-
|
99 |
-
_, col, _ = st.columns([1,3,1])
|
100 |
-
with col.expander("Information", expanded=True):
|
101 |
-
st.markdown("""- GPU information comes from [TechPowerUp GPU Specs](https://www.techpowerup.com/gpu-specs/)
|
102 |
-
- Mainly based on [Model Memory Calculator by hf-accelerate](https://huggingface.co/spaces/hf-accelerate/model-memory-usage)
|
103 |
-
using `transformers` library
|
104 |
-
- Inference is calculated following [EleutherAI Transformer Math 101](https://blog.eleuther.ai/transformer-math/),
|
105 |
-
where is estimated as """)
|
106 |
-
|
107 |
-
st.latex(r"""\text{Memory}_\text{Inference} \approx \text{Model Size} \times 1.2""")
|
108 |
-
st.markdown("""- For LoRa Fine-tuning, I'm asuming a **16-bit** dtype of trainable parameters. The formula (in terms of GB) is""")
|
109 |
-
st.latex(r"\text{Memory}_\text{LoRa} \approx \text{Model Size} + \left(\text{ \# trainable Params}_\text{Billions}\times\frac{16}{8} \times 4\right) \times 1.2")
|
110 |
-
st.markdown("- You can understand `int4` as models in `GPTQ-4bit`, `AWQ-4bit` or `Q4_0 GGUF/GGML` formats")
|
111 |
-
|
112 |
|
113 |
_memory_table = memory_table.copy()
|
114 |
memory_table = memory_table.round(2).T
|
|
|
52 |
|
53 |
gpu_specs = get_gpu_specs()
|
54 |
|
55 |
+
_, col, _ = st.columns([1,3,1])
|
56 |
+
with col.expander("Information", expanded=True):
|
57 |
+
st.markdown("""- GPU information comes from [TechPowerUp GPU Specs](https://www.techpowerup.com/gpu-specs/)
|
58 |
+
- Mainly based on [Model Memory Calculator by hf-accelerate](https://huggingface.co/spaces/hf-accelerate/model-memory-usage)
|
59 |
+
using `transformers` library
|
60 |
+
- Inference is calculated following [EleutherAI Transformer Math 101](https://blog.eleuther.ai/transformer-math/),
|
61 |
+
where is estimated as """)
|
62 |
+
|
63 |
+
st.latex(r"""\text{Memory}_\text{Inference} \approx \text{Model Size} \times 1.2""")
|
64 |
+
st.markdown("""- For LoRa Fine-tuning, I'm asuming a **16-bit** dtype of trainable parameters. The formula (in terms of GB) is""")
|
65 |
+
st.latex(r"\text{Memory}_\text{LoRa} \approx \text{Model Size} + \left(\text{ \# trainable Params}_\text{Billions}\times\frac{16}{8} \times 4\right) \times 1.2")
|
66 |
+
st.markdown("- You can understand `int4` as models in `GPTQ-4bit`, `AWQ-4bit` or `Q4_0 GGUF/GGML` formats")
|
67 |
+
|
68 |
access_token = st.sidebar.text_input("Access token")
|
69 |
model_name = st.sidebar.text_input("Model name", value="mistralai/Mistral-7B-v0.1")
|
70 |
if not model_name:
|
|
|
97 |
max_ram = gpu_info['RAM (GB)'].max()
|
98 |
ram = st.sidebar.slider("Filter by RAM (GB)", min_ram, max_ram, (10.0, 40.0), step=0.5)
|
99 |
gpu_info = gpu_info[gpu_info["RAM (GB)"].between(ram[0], ram[1])]
|
100 |
+
if len(gpu_info) == 0:
|
101 |
+
st.sidebar.error(f"**{gpu_vendor}** has no GPU in that RAM range")
|
102 |
+
st.stop()
|
103 |
gpu = st.sidebar.selectbox("GPU", gpu_info['Product Name'].index.tolist(), format_func=lambda x : gpu_specs.iloc[x]['Product Name'])
|
104 |
gpu_spec = gpu_specs.iloc[gpu]
|
105 |
gpu_spec.name = 'INFO'
|
|
|
111 |
memory_table = pd.DataFrame(st.session_state[model_name]).set_index('dtype')
|
112 |
memory_table['LoRA Fine-Tuning (GB)'] = (memory_table["Total Size (GB)"] +
|
113 |
(memory_table["Parameters (Billion)"]* lora_pct/100 * (16/8)*4)) * 1.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
_memory_table = memory_table.copy()
|
116 |
memory_table = memory_table.round(2).T
|