Spaces:
Running
Running
import streamlit as st | |
from streamlit_datalist import stDatalist | |
import pandas as pd | |
from utils import extract_from_url, get_model, calculate_memory | |
import plotly.express as px | |
import numpy as np | |
import gc | |
from huggingface_hub import login | |
st.set_page_config(page_title='Can you run it? LLM version', layout="wide", initial_sidebar_state="expanded") | |
model_list = [ | |
"NousResearch/Meta-Llama-3-8B-Instruct", | |
"NousResearch/Meta-Llama-3-70B-Instruct", | |
"mistral-community/Mistral-7B-v0.2", | |
# "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"mistral-community/Mixtral-8x22B-v0.1", | |
"HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", | |
# "CohereForAI/c4ai-command-r-plus", | |
# "CohereForAI/c4ai-command-r-v01", | |
"hpcai-tech/grok-1", | |
"NexaAIDev/Octopus-v2", | |
"HuggingFaceH4/zephyr-7b-gemma-v0.1", | |
"HuggingFaceH4/starchat2-15b-v0.1", | |
"deepseek-ai/deepseek-coder-6.7b-instruct", | |
"deepseek-ai/deepseek-coder-1.3b-base", | |
"microsoft/phi-2", | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
"codellama/CodeLlama-7b-hf", | |
"codellama/CodeLlama-13b-hf", | |
"codellama/CodeLlama-34b-hf", | |
"Phind/Phind-CodeLlama-34B-v2", | |
"tiiuae/falcon-40B", | |
"tiiuae/falcon-40B-Instruct", | |
"tiiuae/falcon-180B", | |
"tiiuae/falcon-180B-Chat", | |
] | |
st.title("Can you run it? LLM version") | |
percentage_width_main = 80 | |
st.markdown( | |
f"""<style> | |
.appview-container .main .block-container{{ | |
max-width: {percentage_width_main}%;}} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
def cache_model_list(): | |
model_list_info = {} | |
for model_name in model_list: | |
if not "tiiuae/falcon" in model_name: # Exclude Falcon models | |
model = get_model(model_name, library="transformers", access_token="") | |
model_list_info[model_name] = calculate_memory(model, ["float32", "float16/bfloat16", "int8", "int4"]) | |
del model | |
gc.collect() | |
return model_list_info | |
def get_gpu_specs(): | |
return pd.read_csv("data/gpu_specs.csv") | |
# @st.cache_resource | |
# def get_mistralai_table(): | |
# model = get_model("mistralai/Mistral-7B-v0.1", library="transformers", access_token="") | |
# return calculate_memory(model, ["float32", "float16/bfloat16", "int8", "int4"]) | |
def show_gpu_info(info, trainable_params=0, vendor=""): | |
for var in ['Inference', 'Full Training Adam', 'LoRa Fine-tuning']: | |
_info = info.loc[var] | |
if vendor != "Apple": | |
if _info['Number of GPUs'] >= 3: | |
func = st.error | |
icon = "⛔" | |
elif _info['Number of GPUs'] == 2: | |
func = st.warning | |
icon = "⚠️" | |
else: | |
func = st.success | |
icon = "✅" | |
msg = f"You require **{_info['Number of GPUs']}** GPUs for **{var}**" | |
if var == 'LoRa Fine-tuning': | |
msg += f" ({trainable_params}%)" | |
else: | |
if _info['Number of GPUs']==1: | |
msg = f"You can run **{var}**" | |
func = st.success | |
icon = "✅" | |
else: | |
msg = f"You cannot run **{var}**" | |
func = st.error | |
icon = "⛔" | |
func(msg, icon=icon) | |
def get_name(index): | |
row = gpu_specs.iloc[index] | |
return f"{row['Product Name']} ({row['RAM (GB)']} GB, {row['Year']})" | |
def custom_ceil(a, precision=0): | |
return np.round(a + 0.5 * 10**(-precision), precision) | |
gpu_specs = get_gpu_specs() | |
model_list_info = cache_model_list() | |
_, col, _ = st.columns([1,3,1]) | |
with col.expander("Information", expanded=True): | |
st.markdown("""- GPU information comes from [TechPowerUp GPU Specs](https://www.techpowerup.com/gpu-specs/) | |
- Mainly based on [Model Memory Calculator by hf-accelerate](https://huggingface.co./spaces/hf-accelerate/model-memory-usage) | |
using `transformers` library | |
- Inference is calculated following [EleutherAI Transformer Math 101](https://blog.eleuther.ai/transformer-math/), | |
where is estimated as """) | |
st.latex(r"""\text{Memory}_\text{Inference} \approx \text{Model Size} \times 1.2""") | |
st.markdown("""- For LoRa Fine-tuning, I'm asuming a **16-bit** dtype of trainable parameters. The formula (in terms of GB) is""") | |
st.latex(r"\text{Memory}_\text{LoRa} \approx \left(\text{Model Size} + \text{ \# trainable Params}_\text{Billions}\times\frac{16}{8} \times 4\right) \times 1.2") | |
access_token = st.sidebar.text_input("Access token") | |
if access_token: | |
login(token=access_token) | |
#model_name = st.sidebar.text_input("Model name", value="mistralai/Mistral-7B-v0.1") | |
with st.sidebar.container(): | |
model_name = stDatalist("Model name (Press Enter to apply)", model_list, index=0) | |
if not model_name: | |
st.info("Please enter a model name") | |
st.stop() | |
model_name = extract_from_url(model_name) | |
if model_name not in st.session_state: | |
if 'actual_model' in st.session_state: | |
del st.session_state[st.session_state['actual_model']] | |
del st.session_state['actual_model'] | |
gc.collect() | |
if model_name in model_list_info.keys(): | |
st.session_state[model_name] = model_list_info[model_name] | |
else: | |
model = get_model(model_name, library="transformers", access_token=access_token) | |
st.session_state[model_name] = calculate_memory(model, ["float32", "float16/bfloat16", "int8", "int4"]) | |
del model | |
gc.collect() | |
st.session_state['actual_model'] = model_name | |
gpu_vendor = st.sidebar.selectbox("GPU Vendor", ["NVIDIA", "AMD", "Intel", "Apple"]) | |
# year = st.sidebar.selectbox("Filter by Release Year", list(range(2014, 2024))[::-1], index=None) | |
gpu_info = gpu_specs[gpu_specs['Vendor'] == gpu_vendor].sort_values('Product Name') | |
# if year: | |
# gpu_info = gpu_info[gpu_info['Year'] == year] | |
min_ram = gpu_info['RAM (GB)'].min() | |
max_ram = gpu_info['RAM (GB)'].max() | |
ram = st.sidebar.slider("Filter by RAM (GB)", min_ram, max_ram, (10.0, 40.0), step=0.5) | |
gpu_info = gpu_info[gpu_info["RAM (GB)"].between(ram[0], ram[1])] | |
if len(gpu_info) == 0: | |
st.sidebar.error(f"**{gpu_vendor}** has no GPU in that RAM range") | |
st.stop() | |
gpu = st.sidebar.selectbox("GPU", gpu_info['Product Name'].index.tolist(), format_func=lambda x : gpu_specs.iloc[x]['Product Name']) | |
gpu_spec = gpu_specs.iloc[gpu] | |
gpu_spec.name = 'INFO' | |
lora_pct = st.sidebar.slider("LoRa % trainable parameters", 0.1, 100.0, 2.0, step=0.1) | |
st.sidebar.dataframe(gpu_spec.T.astype(str)) | |
memory_table = pd.DataFrame(st.session_state[model_name]).set_index('dtype') | |
memory_table['LoRA Fine-Tuning (GB)'] = (memory_table["Total Size (GB)"] + | |
(memory_table["Parameters (Billion)"]* lora_pct/100 * (16/8)*4)) * 1.2 | |
_memory_table = memory_table.copy() | |
memory_table = memory_table.round(2).T | |
_memory_table /= gpu_spec['RAM (GB)'] | |
_memory_table = _memory_table.apply(np.ceil).astype(int).drop(columns=['Parameters (Billion)', 'Total Size (GB)']) | |
_memory_table.columns = ['Inference', 'Full Training Adam', 'LoRa Fine-tuning'] | |
_memory_table = _memory_table.stack().reset_index() | |
_memory_table.columns = ['dtype', 'Variable', 'Number of GPUs'] | |
col1, col2 = st.columns([1,1.3]) | |
if gpu_vendor == "Apple": | |
col.warning("""For M1/M2/M3 Apple chips, PyTorch uses [Metal Performance Shaders (MPS)](https://huggingface.co./docs/accelerate/usage_guides/mps) as backend.\\ | |
Remember that Apple M1/M2/M3 chips share memory between CPU and GPU.""", icon="⚠️") | |
with col1: | |
st.write(f"#### [{model_name}](https://huggingface.co./{model_name}) ({custom_ceil(memory_table.iloc[3,0],1):.1f}B)") | |
dtypes = memory_table.columns.tolist()[::-1] | |
tabs = st.tabs(dtypes) | |
for dtype, tab in zip(dtypes, tabs): | |
with tab: | |
if dtype in ["int4", "int8"]: | |
_dtype = dtype.replace("int", "") | |
st.markdown(f"`int{_dtype}` refers to models in `GPTQ-{_dtype}bit`, `AWQ-{_dtype}bit` or `Q{_dtype}_0 GGUF/GGML`") | |
info = _memory_table[_memory_table['dtype'] == dtype].set_index('Variable') | |
show_gpu_info(info, lora_pct, gpu_vendor) | |
st.write(memory_table.iloc[[0, 1, 2, 4]]) | |
with col2: | |
extra = "" | |
if gpu_vendor == "Apple": | |
st.warning("This graph is irrelevant for M1/M2 chips as they can't run in parallel.", icon="⚠️") | |
extra = "⚠️" | |
num_colors= 4 | |
colors = [px.colors.sequential.RdBu[int(i*(len(px.colors.sequential.RdBu)-1)/(num_colors-1))] for i in range(num_colors)] | |
fig = px.bar(_memory_table, x='Variable', y='Number of GPUs', color='dtype', barmode='group', color_discrete_sequence=colors) | |
fig.update_layout(title=dict(text=f"{extra} Number of GPUs required for<br> {get_name(gpu)}", font=dict(size=25)) | |
, xaxis_tickfont_size=14, yaxis_tickfont_size=16, yaxis_dtick='1') | |
st.plotly_chart(fig, use_container_width=True) | |