Create app
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from diffusers import StableDiffusion3Pipeline
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import psutil
|
6 |
+
|
7 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(
|
8 |
+
"stabilityai/stable-diffusion-3.5-medium",
|
9 |
+
torch_dtype=torch.float16,
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
seed = None
|
14 |
+
if seed is None:
|
15 |
+
seed = int.from_bytes(os.urandom(2), "big")
|
16 |
+
print(f"Using seed: {seed}")
|
17 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
18 |
+
|
19 |
+
def generate_image(prompt):
|
20 |
+
with torch.device(device):
|
21 |
+
print(f"Current device: {torch.device(device)}")
|
22 |
+
image = pipe(
|
23 |
+
prompt=prompt,
|
24 |
+
height=(height := 512),
|
25 |
+
width=(width := 512),
|
26 |
+
num_inference_steps=28,
|
27 |
+
guidance_scale=7.0,
|
28 |
+
num_images_per_prompt=1,
|
29 |
+
generator=generator,
|
30 |
+
output_type="pil",
|
31 |
+
return_dict=True,
|
32 |
+
callback_on_step_end_tensor_inputs=["latents"],
|
33 |
+
).images[0]
|
34 |
+
return image
|
35 |
+
|
36 |
+
iface = gr.Interface(
|
37 |
+
fn=generate_image,
|
38 |
+
inputs="text",
|
39 |
+
outputs="image",
|
40 |
+
title="Stable Diffusion 3.5",
|
41 |
+
description="Enter a prompt to generate an image using Stable Diffusion 3.5."
|
42 |
+
)
|
43 |
+
|
44 |
+
iface.launch()
|