github-actions[bot]
Sync with https://github.com/mozilla-ai/document-to-podcast
f63a450
"""Streamlit app for converting documents to podcasts."""
import io
import os
import re
from pathlib import Path
import numpy as np
import soundfile as sf
import streamlit as st
from document_to_podcast.inference.text_to_speech import text_to_speech
from document_to_podcast.preprocessing import DATA_LOADERS, DATA_CLEANERS
from document_to_podcast.inference.model_loaders import (
load_llama_cpp_model,
load_tts_model,
)
from document_to_podcast.config import DEFAULT_PROMPT, DEFAULT_SPEAKERS, Speaker
from document_to_podcast.inference.text_to_text import text_to_text_stream
from document_to_podcast.utils import stack_audio_segments
@st.cache_resource
def load_text_to_text_model():
return load_llama_cpp_model(
model_id="bartowski/Qwen2.5-3B-Instruct-GGUF/Qwen2.5-3B-Instruct-f16.gguf"
)
@st.cache_resource
def load_text_to_speech_model():
if os.environ.get("HF_SPACE") == "TRUE":
return load_tts_model("hexgrad/Kokoro-82M/kokoro-v0_19.pth")
else:
return load_tts_model("OuteAI/OuteTTS-0.2-500M-GGUF/OuteTTS-0.2-500M-FP16.gguf")
def numpy_to_wav(audio_array: np.ndarray, sample_rate: int) -> io.BytesIO:
"""
Convert a numpy array to audio bytes in .wav format, ready to save into a file.
"""
wav_io = io.BytesIO()
sf.write(wav_io, audio_array, sample_rate, format="WAV")
wav_io.seek(0)
return wav_io
script = "script"
audio = "audio"
gen_button = "generate podcast button"
if script not in st.session_state:
st.session_state[script] = ""
if audio not in st.session_state:
st.session_state.audio = []
if gen_button not in st.session_state:
st.session_state[gen_button] = False
def gen_button_clicked():
st.session_state[gen_button] = True
st.title("Document To Podcast")
st.header("Upload a File")
uploaded_file = st.file_uploader(
"Choose a file", type=["pdf", "html", "txt", "docx", "md"]
)
st.header("Or Enter a Website URL")
url = st.text_input("URL", placeholder="https://blog.mozilla.ai/...")
if uploaded_file is not None or url:
st.divider()
st.header("Loading and Cleaning Data")
st.markdown(
"[Docs for this Step](https://mozilla-ai.github.io/document-to-podcast/step-by-step-guide/#step-1-document-pre-processing)"
)
st.divider()
if uploaded_file:
extension = Path(uploaded_file.name).suffix
raw_text = DATA_LOADERS[extension](uploaded_file)
else:
extension = ".html"
raw_text = DATA_LOADERS["url"](url)
col1, col2 = st.columns(2)
with col1:
st.subheader("Raw Text")
st.text_area(
f"Number of characters before cleaning: {len(raw_text)}",
f"{raw_text[:500]} . . .",
)
clean_text = DATA_CLEANERS[extension](raw_text)
with col2:
st.subheader("Cleaned Text")
st.text_area(
f"Number of characters after cleaning: {len(clean_text)}",
f"{clean_text[:500]} . . .",
)
st.session_state["clean_text"] = clean_text
st.divider()
if "clean_text" in st.session_state:
clean_text = st.session_state["clean_text"]
st.divider()
st.header("Downloading and Loading models")
st.markdown(
"[Docs for this Step](https://mozilla-ai.github.io/document-to-podcast/step-by-step-guide/#step-2-podcast-script-generation)"
)
st.divider()
text_model = load_text_to_text_model()
speech_model = load_text_to_speech_model()
if os.environ.get("HF_SPACE") == "TRUE":
tts_link = "- [hexgrad/Kokoro-82M](https://huggingface.co./hexgrad/Kokoro-82M)"
SPEAKERS = [
{
"id": 1,
"name": "Sarah",
"description": "The main host. She explains topics clearly using anecdotes and analogies, teaching in an engaging and captivating way.",
"voice_profile": "af_sarah",
},
{
"id": 2,
"name": "Michael",
"description": "The co-host. He keeps the conversation on track, asks curious follow-up questions, and reacts with excitement or confusion, often using interjections like hmm or umm.",
"voice_profile": "am_michael",
},
]
else:
tts_link = "- [OuteAI/OuteTTS-0.2-500M](https://huggingface.co./OuteAI/OuteTTS-0.2-500M-GGUF)"
SPEARES = DEFAULT_SPEAKERS
st.markdown(
"For this demo, we are using the following models: \n"
"- [Qwen2.5-3B-Instruct](https://huggingface.co./bartowski/Qwen2.5-3B-Instruct-GGUF)\n"
f"{tts_link}\n"
)
st.markdown(
"You can check the [Customization Guide](https://mozilla-ai.github.io/document-to-podcast/customization/)"
" for more information on how to use different models."
)
# ~4 characters per token is considered a reasonable default.
max_characters = text_model.n_ctx() * 4
if len(clean_text) > max_characters:
st.warning(
f"Input text is too big ({len(clean_text)})."
f" Using only a subset of it ({max_characters})."
)
clean_text = clean_text[:max_characters]
st.divider()
st.header("Podcast generation")
st.markdown(
"[Docs for this Step](https://mozilla-ai.github.io/document-to-podcast/step-by-step-guide/#step-3-audio-podcast-generation)"
)
st.divider()
st.subheader("Speaker configuration")
for s in SPEAKERS:
s.pop("id", None)
speakers = st.data_editor(SPEAKERS, num_rows="dynamic")
if st.button("Generate Podcast", on_click=gen_button_clicked):
for n, speaker in enumerate(speakers):
speaker["id"] = n + 1
speakers_str = "\n".join(
str(Speaker.model_validate(speaker))
for speaker in speakers
if all(
speaker.get(x, None) for x in ["name", "description", "voice_profile"]
)
)
system_prompt = DEFAULT_PROMPT.replace("{SPEAKERS}", speakers_str)
with st.spinner("Generating Podcast..."):
text = ""
for chunk in text_to_text_stream(
clean_text, text_model, system_prompt=system_prompt.strip()
):
text += chunk
if text.endswith("\n") and "Speaker" in text:
st.session_state.script += text
st.write(text)
speaker_id = re.search(r"Speaker (\d+)", text).group(1)
voice_profile = next(
speaker["voice_profile"]
for speaker in speakers
if speaker["id"] == int(speaker_id)
)
with st.spinner("Generating Audio..."):
speech = text_to_speech(
text.split(f'"Speaker {speaker_id}":')[-1],
speech_model,
voice_profile,
)
st.audio(speech, sample_rate=speech_model.sample_rate)
st.session_state.audio.append(speech)
text = ""
st.session_state.script += "}"
if st.session_state[gen_button]:
audio_np = stack_audio_segments(
st.session_state.audio, speech_model.sample_rate, silence_pad=0.0
)
audio_wav = numpy_to_wav(audio_np, speech_model.sample_rate)
if st.download_button(
label="Save Podcast to audio file",
data=audio_wav,
file_name="podcast.wav",
):
st.markdown("Podcast saved to disk!")
if st.download_button(
label="Save Podcast script to text file",
data=st.session_state.script,
file_name="script.txt",
):
st.markdown("Script saved to disk!")