Spaces:
Running
on
T4
Running
on
T4
"""Streamlit app for converting documents to podcasts.""" | |
import io | |
import os | |
import re | |
from pathlib import Path | |
import numpy as np | |
import soundfile as sf | |
import streamlit as st | |
from document_to_podcast.inference.text_to_speech import text_to_speech | |
from document_to_podcast.preprocessing import DATA_LOADERS, DATA_CLEANERS | |
from document_to_podcast.inference.model_loaders import ( | |
load_llama_cpp_model, | |
load_tts_model, | |
) | |
from document_to_podcast.config import DEFAULT_PROMPT, DEFAULT_SPEAKERS, Speaker | |
from document_to_podcast.inference.text_to_text import text_to_text_stream | |
from document_to_podcast.utils import stack_audio_segments | |
def load_text_to_text_model(): | |
return load_llama_cpp_model( | |
model_id="bartowski/Qwen2.5-3B-Instruct-GGUF/Qwen2.5-3B-Instruct-f16.gguf" | |
) | |
def load_text_to_speech_model(): | |
if os.environ.get("HF_SPACE") == "TRUE": | |
return load_tts_model("hexgrad/Kokoro-82M/kokoro-v0_19.pth") | |
else: | |
return load_tts_model("OuteAI/OuteTTS-0.2-500M-GGUF/OuteTTS-0.2-500M-FP16.gguf") | |
def numpy_to_wav(audio_array: np.ndarray, sample_rate: int) -> io.BytesIO: | |
""" | |
Convert a numpy array to audio bytes in .wav format, ready to save into a file. | |
""" | |
wav_io = io.BytesIO() | |
sf.write(wav_io, audio_array, sample_rate, format="WAV") | |
wav_io.seek(0) | |
return wav_io | |
script = "script" | |
audio = "audio" | |
gen_button = "generate podcast button" | |
if script not in st.session_state: | |
st.session_state[script] = "" | |
if audio not in st.session_state: | |
st.session_state.audio = [] | |
if gen_button not in st.session_state: | |
st.session_state[gen_button] = False | |
def gen_button_clicked(): | |
st.session_state[gen_button] = True | |
st.title("Document To Podcast") | |
st.header("Upload a File") | |
uploaded_file = st.file_uploader( | |
"Choose a file", type=["pdf", "html", "txt", "docx", "md"] | |
) | |
st.header("Or Enter a Website URL") | |
url = st.text_input("URL", placeholder="https://blog.mozilla.ai/...") | |
if uploaded_file is not None or url: | |
st.divider() | |
st.header("Loading and Cleaning Data") | |
st.markdown( | |
"[Docs for this Step](https://mozilla-ai.github.io/document-to-podcast/step-by-step-guide/#step-1-document-pre-processing)" | |
) | |
st.divider() | |
if uploaded_file: | |
extension = Path(uploaded_file.name).suffix | |
raw_text = DATA_LOADERS[extension](uploaded_file) | |
else: | |
extension = ".html" | |
raw_text = DATA_LOADERS["url"](url) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Raw Text") | |
st.text_area( | |
f"Number of characters before cleaning: {len(raw_text)}", | |
f"{raw_text[:500]} . . .", | |
) | |
clean_text = DATA_CLEANERS[extension](raw_text) | |
with col2: | |
st.subheader("Cleaned Text") | |
st.text_area( | |
f"Number of characters after cleaning: {len(clean_text)}", | |
f"{clean_text[:500]} . . .", | |
) | |
st.session_state["clean_text"] = clean_text | |
st.divider() | |
if "clean_text" in st.session_state: | |
clean_text = st.session_state["clean_text"] | |
st.divider() | |
st.header("Downloading and Loading models") | |
st.markdown( | |
"[Docs for this Step](https://mozilla-ai.github.io/document-to-podcast/step-by-step-guide/#step-2-podcast-script-generation)" | |
) | |
st.divider() | |
text_model = load_text_to_text_model() | |
speech_model = load_text_to_speech_model() | |
if os.environ.get("HF_SPACE") == "TRUE": | |
tts_link = "- [hexgrad/Kokoro-82M](https://huggingface.co./hexgrad/Kokoro-82M)" | |
SPEAKERS = [ | |
{ | |
"id": 1, | |
"name": "Sarah", | |
"description": "The main host. She explains topics clearly using anecdotes and analogies, teaching in an engaging and captivating way.", | |
"voice_profile": "af_sarah", | |
}, | |
{ | |
"id": 2, | |
"name": "Michael", | |
"description": "The co-host. He keeps the conversation on track, asks curious follow-up questions, and reacts with excitement or confusion, often using interjections like hmm or umm.", | |
"voice_profile": "am_michael", | |
}, | |
] | |
else: | |
tts_link = "- [OuteAI/OuteTTS-0.2-500M](https://huggingface.co./OuteAI/OuteTTS-0.2-500M-GGUF)" | |
SPEARES = DEFAULT_SPEAKERS | |
st.markdown( | |
"For this demo, we are using the following models: \n" | |
"- [Qwen2.5-3B-Instruct](https://huggingface.co./bartowski/Qwen2.5-3B-Instruct-GGUF)\n" | |
f"{tts_link}\n" | |
) | |
st.markdown( | |
"You can check the [Customization Guide](https://mozilla-ai.github.io/document-to-podcast/customization/)" | |
" for more information on how to use different models." | |
) | |
# ~4 characters per token is considered a reasonable default. | |
max_characters = text_model.n_ctx() * 4 | |
if len(clean_text) > max_characters: | |
st.warning( | |
f"Input text is too big ({len(clean_text)})." | |
f" Using only a subset of it ({max_characters})." | |
) | |
clean_text = clean_text[:max_characters] | |
st.divider() | |
st.header("Podcast generation") | |
st.markdown( | |
"[Docs for this Step](https://mozilla-ai.github.io/document-to-podcast/step-by-step-guide/#step-3-audio-podcast-generation)" | |
) | |
st.divider() | |
st.subheader("Speaker configuration") | |
for s in SPEAKERS: | |
s.pop("id", None) | |
speakers = st.data_editor(SPEAKERS, num_rows="dynamic") | |
if st.button("Generate Podcast", on_click=gen_button_clicked): | |
for n, speaker in enumerate(speakers): | |
speaker["id"] = n + 1 | |
speakers_str = "\n".join( | |
str(Speaker.model_validate(speaker)) | |
for speaker in speakers | |
if all( | |
speaker.get(x, None) for x in ["name", "description", "voice_profile"] | |
) | |
) | |
system_prompt = DEFAULT_PROMPT.replace("{SPEAKERS}", speakers_str) | |
with st.spinner("Generating Podcast..."): | |
text = "" | |
for chunk in text_to_text_stream( | |
clean_text, text_model, system_prompt=system_prompt.strip() | |
): | |
text += chunk | |
if text.endswith("\n") and "Speaker" in text: | |
st.session_state.script += text | |
st.write(text) | |
speaker_id = re.search(r"Speaker (\d+)", text).group(1) | |
voice_profile = next( | |
speaker["voice_profile"] | |
for speaker in speakers | |
if speaker["id"] == int(speaker_id) | |
) | |
with st.spinner("Generating Audio..."): | |
speech = text_to_speech( | |
text.split(f'"Speaker {speaker_id}":')[-1], | |
speech_model, | |
voice_profile, | |
) | |
st.audio(speech, sample_rate=speech_model.sample_rate) | |
st.session_state.audio.append(speech) | |
text = "" | |
st.session_state.script += "}" | |
if st.session_state[gen_button]: | |
audio_np = stack_audio_segments( | |
st.session_state.audio, speech_model.sample_rate, silence_pad=0.0 | |
) | |
audio_wav = numpy_to_wav(audio_np, speech_model.sample_rate) | |
if st.download_button( | |
label="Save Podcast to audio file", | |
data=audio_wav, | |
file_name="podcast.wav", | |
): | |
st.markdown("Podcast saved to disk!") | |
if st.download_button( | |
label="Save Podcast script to text file", | |
data=st.session_state.script, | |
file_name="script.txt", | |
): | |
st.markdown("Script saved to disk!") | |