Spaces:
Runtime error
Runtime error
switch pretrained model
Browse files
app.py
CHANGED
@@ -1,70 +1,70 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import supervision as sv
|
3 |
-
from func import detect_and_track
|
4 |
-
from transformers import
|
5 |
-
|
6 |
-
processor =
|
7 |
-
model =
|
8 |
-
tracker = sv.ByteTrack()
|
9 |
-
|
10 |
-
mask_annotator = sv.MaskAnnotator()
|
11 |
-
bbox_annotator = sv.BoundingBoxAnnotator()
|
12 |
-
label_annotator = sv.LabelAnnotator()
|
13 |
-
|
14 |
-
|
15 |
-
def process_video(video_path, confidence_threshold):
|
16 |
-
return detect_and_track(
|
17 |
-
video_path,
|
18 |
-
model,
|
19 |
-
processor,
|
20 |
-
tracker,
|
21 |
-
confidence_threshold,
|
22 |
-
mask_annotator,
|
23 |
-
bbox_annotator,
|
24 |
-
label_annotator,
|
25 |
-
)
|
26 |
-
|
27 |
-
|
28 |
-
with gr.Blocks() as demo:
|
29 |
-
with gr.Row():
|
30 |
-
with gr.Column():
|
31 |
-
in_video = gr.Video(
|
32 |
-
label="待检测视频",
|
33 |
-
show_download_button=True,
|
34 |
-
show_share_button=True,
|
35 |
-
)
|
36 |
-
slide_cofidence = gr.Slider(
|
37 |
-
minimum=0.0, maximum=1.0, value=0.8, label="置信度阈值"
|
38 |
-
)
|
39 |
-
examples = gr.Examples(
|
40 |
-
examples=[
|
41 |
-
"./demo_video/blurry.mp4",
|
42 |
-
"./demo_video/high-way.mp4",
|
43 |
-
"./demo_video/aerial.mp4",
|
44 |
-
],
|
45 |
-
inputs=in_video,
|
46 |
-
label="案例视频",
|
47 |
-
)
|
48 |
-
with gr.Column():
|
49 |
-
out_video = gr.Video(
|
50 |
-
label="检测结果视频",
|
51 |
-
interactive=False,
|
52 |
-
show_download_button=True,
|
53 |
-
show_share_button=True,
|
54 |
-
)
|
55 |
-
combine_video = gr.Video(
|
56 |
-
interactive=False,
|
57 |
-
label="前后对比",
|
58 |
-
show_download_button=True,
|
59 |
-
show_share_button=True,
|
60 |
-
)
|
61 |
-
|
62 |
-
start_detect = gr.Button(value="开始检测")
|
63 |
-
|
64 |
-
start_detect.click(
|
65 |
-
fn=process_video,
|
66 |
-
inputs=[in_video, slide_cofidence],
|
67 |
-
outputs=[out_video, combine_video],
|
68 |
-
)
|
69 |
-
|
70 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import supervision as sv
|
3 |
+
from func import detect_and_track
|
4 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
5 |
+
|
6 |
+
processor = AutoImageProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
|
7 |
+
model = AutoModelForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
|
8 |
+
tracker = sv.ByteTrack()
|
9 |
+
|
10 |
+
mask_annotator = sv.MaskAnnotator()
|
11 |
+
bbox_annotator = sv.BoundingBoxAnnotator()
|
12 |
+
label_annotator = sv.LabelAnnotator()
|
13 |
+
|
14 |
+
|
15 |
+
def process_video(video_path, confidence_threshold):
|
16 |
+
return detect_and_track(
|
17 |
+
video_path,
|
18 |
+
model,
|
19 |
+
processor,
|
20 |
+
tracker,
|
21 |
+
confidence_threshold,
|
22 |
+
mask_annotator,
|
23 |
+
bbox_annotator,
|
24 |
+
label_annotator,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
with gr.Blocks() as demo:
|
29 |
+
with gr.Row():
|
30 |
+
with gr.Column():
|
31 |
+
in_video = gr.Video(
|
32 |
+
label="待检测视频",
|
33 |
+
show_download_button=True,
|
34 |
+
show_share_button=True,
|
35 |
+
)
|
36 |
+
slide_cofidence = gr.Slider(
|
37 |
+
minimum=0.0, maximum=1.0, value=0.8, label="置信度阈值"
|
38 |
+
)
|
39 |
+
examples = gr.Examples(
|
40 |
+
examples=[
|
41 |
+
"./demo_video/blurry.mp4",
|
42 |
+
"./demo_video/high-way.mp4",
|
43 |
+
"./demo_video/aerial.mp4",
|
44 |
+
],
|
45 |
+
inputs=in_video,
|
46 |
+
label="案例视频",
|
47 |
+
)
|
48 |
+
with gr.Column():
|
49 |
+
out_video = gr.Video(
|
50 |
+
label="检测结果视频",
|
51 |
+
interactive=False,
|
52 |
+
show_download_button=True,
|
53 |
+
show_share_button=True,
|
54 |
+
)
|
55 |
+
combine_video = gr.Video(
|
56 |
+
interactive=False,
|
57 |
+
label="前后对比",
|
58 |
+
show_download_button=True,
|
59 |
+
show_share_button=True,
|
60 |
+
)
|
61 |
+
|
62 |
+
start_detect = gr.Button(value="开始检测")
|
63 |
+
|
64 |
+
start_detect.click(
|
65 |
+
fn=process_video,
|
66 |
+
inputs=[in_video, slide_cofidence],
|
67 |
+
outputs=[out_video, combine_video],
|
68 |
+
)
|
69 |
+
|
70 |
+
demo.launch()
|