Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,39 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from peft import PeftModel
|
|
|
4 |
|
5 |
-
#
|
6 |
model_name = "ybelkada/falcon-7b-sharded-bf16"
|
7 |
fine_tuned_model = "mounseflit/falcon-7b-marrakech"
|
8 |
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
-
base_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
11 |
|
12 |
-
# Load
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
model = PeftModel.from_pretrained(base_model, fine_tuned_model)
|
14 |
|
15 |
-
#
|
|
|
|
|
|
|
16 |
def generate_text(prompt):
|
17 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("
|
18 |
-
|
|
|
19 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
|
21 |
-
# Gradio
|
22 |
-
|
23 |
|
24 |
-
|
25 |
iface.launch()
|
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from peft import PeftModel
|
4 |
+
import gradio as gr
|
5 |
|
6 |
+
# Set model name and path
|
7 |
model_name = "ybelkada/falcon-7b-sharded-bf16"
|
8 |
fine_tuned_model = "mounseflit/falcon-7b-marrakech"
|
9 |
|
10 |
+
# Load tokenizer
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
12 |
|
13 |
+
# Load base model with 8-bit precision and offload to CPU
|
14 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
model_name,
|
16 |
+
load_in_8bit=True, # Quantization to 8-bit
|
17 |
+
device_map="auto", # Auto device map for offloading
|
18 |
+
offload_folder="offload", # Offload large parts of the model to disk
|
19 |
+
offload_state_dict=True # Enable state dict offloading to reduce memory usage
|
20 |
+
)
|
21 |
+
|
22 |
+
# Load the fine-tuned LoRA model on top of the quantized model
|
23 |
model = PeftModel.from_pretrained(base_model, fine_tuned_model)
|
24 |
|
25 |
+
# Ensure the model is in evaluation mode
|
26 |
+
model.eval()
|
27 |
+
|
28 |
+
# Function to generate text
|
29 |
def generate_text(prompt):
|
30 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=50, truncation=True).to("cpu") # Reduce input length
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model.generate(**inputs, max_length=100) # Reduce output length
|
33 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
|
35 |
+
# Create Gradio interface
|
36 |
+
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Falcon 7B Lite")
|
37 |
|
38 |
+
# Launch the app
|
39 |
iface.launch()
|