Spaces:
Running
Running
added eval sql
Browse files- MODEL_README.md +156 -0
- app.py +27 -2
- requirements.txt +1 -0
- validate_sql.py +57 -0
MODEL_README.md
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
inference:
|
4 |
+
parameters:
|
5 |
+
do_sample: false
|
6 |
+
max_length: 200
|
7 |
+
widget:
|
8 |
+
- text: "CREATE TABLE stadium (\n stadium_id number,\n location text,\n name text,\n capacity number,\n)\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many stadiums in total?\n\nSELECT"
|
9 |
+
example_title: "Number stadiums"
|
10 |
+
- text: "CREATE TABLE work_orders ( ID NUMBER, CREATED_AT TEXT, COST FLOAT, INVOICE_AMOUNT FLOAT, IS_DUE BOOLEAN, IS_OPEN BOOLEAN, IS_OVERDUE BOOLEAN, COUNTRY_NAME TEXT, )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many work orders are open?\n\nSELECT"
|
11 |
+
example_title: "Open work orders"
|
12 |
+
- text: "CREATE TABLE stadium ( stadium_id number, location text, name text, capacity number, highest number, lowest number, average number )\n\nCREATE TABLE singer ( singer_id number, name text, country text, song_name text, song_release_year text, age number, is_male others )\n\nCREATE TABLE concert ( concert_id number, concert_name text, theme text, stadium_id text, year text )\n\nCREATE TABLE singer_in_concert ( concert_id number, singer_id text )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- What is the maximum, the average, and the minimum capacity of stadiums ?\n\nSELECT"
|
13 |
+
example_title: "Stadium capacity"
|
14 |
+
---
|
15 |
+
|
16 |
+
# DucKDB-NSQL-7B
|
17 |
+
|
18 |
+
## Model Description
|
19 |
+
|
20 |
+
NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks.
|
21 |
+
|
22 |
+
In this repository we are introducing a new member of NSQL, DuckDB-NSQL. It's based on Meta's original [Llama-2 7B model](https://huggingface.co/meta-llama/Llama-2-7b) and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of DuckDB text-to-SQL pairs.
|
23 |
+
|
24 |
+
## Training Data
|
25 |
+
|
26 |
+
The general SQL queries are the SQL subset from [The Stack](https://huggingface.co/datasets/bigcode/the-stack), containing 1M training samples. The samples we transpiled to DuckDB SQL, using [sqlglot](https://github.com/tobymao/sqlglot). The labeled text-to-SQL pairs come [NSText2SQL](https://huggingface.co/datasets/NumbersStation/NSText2SQL) that were also transpiled to DuckDB SQL, and 200k synthetically generated DuckDB SQL queries, based on the DuckDB v.0.9.2 documentation.
|
27 |
+
|
28 |
+
## Evaluation Data
|
29 |
+
|
30 |
+
We evaluate our models on a DuckDB-specific benchmark that contains 75 text-to-SQL pairs. The benchmark is available [here](https://github.com/NumbersStationAI/DuckDB-NSQL/).
|
31 |
+
|
32 |
+
## Training Procedure
|
33 |
+
|
34 |
+
DuckDB-NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We pre-trained for 3 epochs and fine-tuned for 10 epochs.
|
35 |
+
|
36 |
+
## Intended Use and Limitations
|
37 |
+
|
38 |
+
The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputs.
|
39 |
+
In contrast to existing text-to-SQL models, the SQL generation is not contrained to `SELECT` statements, but can generate any valid DuckDB SQL statement, including statements for official DuckDB extensions.
|
40 |
+
|
41 |
+
## How to Use
|
42 |
+
|
43 |
+
Example 1:
|
44 |
+
|
45 |
+
```python
|
46 |
+
import torch
|
47 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/nsql-duckdb-7B")
|
49 |
+
model = AutoModelForCausalLM.from_pretrained("motherduckdb/nsql-duckdb-7B", torch_dtype=torch.bfloat16)
|
50 |
+
|
51 |
+
text = """CREATE TABLE stadium (
|
52 |
+
stadium_id number,
|
53 |
+
location text,
|
54 |
+
name text,
|
55 |
+
capacity number,
|
56 |
+
highest number,
|
57 |
+
lowest number,
|
58 |
+
average number
|
59 |
+
)
|
60 |
+
|
61 |
+
CREATE TABLE singer (
|
62 |
+
singer_id number,
|
63 |
+
name text,
|
64 |
+
country text,
|
65 |
+
song_name text,
|
66 |
+
song_release_year text,
|
67 |
+
age number,
|
68 |
+
is_male others
|
69 |
+
)
|
70 |
+
|
71 |
+
CREATE TABLE concert (
|
72 |
+
concert_id number,
|
73 |
+
concert_name text,
|
74 |
+
theme text,
|
75 |
+
stadium_id text,
|
76 |
+
year text
|
77 |
+
)
|
78 |
+
|
79 |
+
CREATE TABLE singer_in_concert (
|
80 |
+
concert_id number,
|
81 |
+
singer_id text
|
82 |
+
)
|
83 |
+
|
84 |
+
-- Using valid DuckDB SQL, answer the following questions for the tables provided above.
|
85 |
+
|
86 |
+
-- What is the maximum, the average, and the minimum capacity of stadiums ?
|
87 |
+
|
88 |
+
SELECT"""
|
89 |
+
|
90 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
91 |
+
|
92 |
+
generated_ids = model.generate(input_ids, max_length=500)
|
93 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
94 |
+
```
|
95 |
+
|
96 |
+
Example 2:
|
97 |
+
|
98 |
+
```python
|
99 |
+
import torch
|
100 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
101 |
+
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/nsql-duckdb-7B")
|
102 |
+
model = AutoModelForCausalLM.from_pretrained("motherduckdb/nsql-duckdb-7B", torch_dtype=torch.bfloat16)
|
103 |
+
|
104 |
+
text = """CREATE TABLE stadium (
|
105 |
+
stadium_id number,
|
106 |
+
location text,
|
107 |
+
name text,
|
108 |
+
capacity number,
|
109 |
+
)
|
110 |
+
|
111 |
+
-- Using valid DuckDB SQL, answer the following questions for the tables provided above.
|
112 |
+
|
113 |
+
-- how many stadiums in total?
|
114 |
+
|
115 |
+
SELECT"""
|
116 |
+
|
117 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
118 |
+
|
119 |
+
generated_ids = model.generate(input_ids, max_length=500)
|
120 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
121 |
+
```
|
122 |
+
|
123 |
+
Example 3:
|
124 |
+
|
125 |
+
```python
|
126 |
+
import torch
|
127 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
128 |
+
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/nsql-duckdb-7B")
|
129 |
+
model = AutoModelForCausalLM.from_pretrained("motherduckdb/nsql-duckdb-7B", torch_dtype=torch.bfloat16)
|
130 |
+
|
131 |
+
text = """CREATE TABLE work_orders (
|
132 |
+
ID NUMBER,
|
133 |
+
CREATED_AT TEXT,
|
134 |
+
COST FLOAT,
|
135 |
+
INVOICE_AMOUNT FLOAT,
|
136 |
+
IS_DUE BOOLEAN,
|
137 |
+
IS_OPEN BOOLEAN,
|
138 |
+
IS_OVERDUE BOOLEAN,
|
139 |
+
COUNTRY_NAME TEXT,
|
140 |
+
)
|
141 |
+
|
142 |
+
-- Using valid DuckDB SQL, answer the following questions for the tables provided above.
|
143 |
+
|
144 |
+
-- how many work orders are open?
|
145 |
+
|
146 |
+
SELECT"""
|
147 |
+
|
148 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
149 |
+
|
150 |
+
generated_ids = model.generate(input_ids, max_length=500)
|
151 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
152 |
+
```
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
For more information (e.g., run with your local database), please find examples in [this repository](https://github.com/NumbersStationAI/DuckDB-NSQL).
|
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
-
|
|
|
4 |
|
5 |
PROMPT_TEMPLATE = """### Instruction:\n{instruction}\n\n### Input:\n{input}{context}\n### Question:\n{question}\n\n### Response:\n"""
|
6 |
INSTRUCTION_TEMPLATE = """Your task is to generate valid duckdb SQL to answer the following question{has_schema}""" # noqa: E501
|
|
|
|
|
7 |
|
8 |
def generate_prompt(question, schema):
|
9 |
input = ""
|
@@ -41,6 +44,24 @@ def generate_sql(question, schema):
|
|
41 |
with s.post(url, json=body, headers=headers) as resp:
|
42 |
return resp.json()["choices"][0]["text"]
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
st.title("DuckDB-NSQL-7B Demo")
|
45 |
|
46 |
expander = st.expander("Customize Schema (Optional)")
|
@@ -56,5 +77,9 @@ text_prompt = st.text_input("What DuckDB SQL query can I write for you?", value=
|
|
56 |
|
57 |
if text_prompt:
|
58 |
sql_query = generate_sql(text_prompt, schema)
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
+
import subprocess
|
4 |
+
import sys
|
5 |
|
6 |
PROMPT_TEMPLATE = """### Instruction:\n{instruction}\n\n### Input:\n{input}{context}\n### Question:\n{question}\n\n### Response:\n"""
|
7 |
INSTRUCTION_TEMPLATE = """Your task is to generate valid duckdb SQL to answer the following question{has_schema}""" # noqa: E501
|
8 |
+
TMP_DIR = "tmp"
|
9 |
+
ERROR_MESSAGE = "Quack! Much to our regret, SQL generation has gone a tad duck-side-down.\nThe model is currently not capable of crafting the desired SQL. \nSorry my duck friend."
|
10 |
|
11 |
def generate_prompt(question, schema):
|
12 |
input = ""
|
|
|
44 |
with s.post(url, json=body, headers=headers) as resp:
|
45 |
return resp.json()["choices"][0]["text"]
|
46 |
|
47 |
+
def validate_sql(query, schema):
|
48 |
+
try:
|
49 |
+
# Define subprocess
|
50 |
+
process = subprocess.Popen(
|
51 |
+
[sys.executable, './validate_sql.py', query, schema],
|
52 |
+
stdout=subprocess.PIPE,
|
53 |
+
stderr=subprocess.PIPE
|
54 |
+
)
|
55 |
+
# Get output and potential parser, and binder error message
|
56 |
+
stdout, stderr = process.communicate(timeout=0.5)
|
57 |
+
if stderr:
|
58 |
+
return False
|
59 |
+
return True
|
60 |
+
except subprocess.TimeoutExpired:
|
61 |
+
process.kill()
|
62 |
+
# timeout reached, so parsing and binding was very likely successful
|
63 |
+
return True
|
64 |
+
|
65 |
st.title("DuckDB-NSQL-7B Demo")
|
66 |
|
67 |
expander = st.expander("Customize Schema (Optional)")
|
|
|
77 |
|
78 |
if text_prompt:
|
79 |
sql_query = generate_sql(text_prompt, schema)
|
80 |
+
valid = validate_sql(sql_query, schema)
|
81 |
+
if not valid:
|
82 |
+
st.code(ERROR_MESSAGE, language="text")
|
83 |
+
else:
|
84 |
+
st.code(sql_query, language="sql")
|
85 |
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
duckdb==0.9.2
|
validate_sql.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import shutil
|
3 |
+
import os
|
4 |
+
import uuid
|
5 |
+
import duckdb
|
6 |
+
from duckdb import ParserException, SyntaxException, BinderException, CatalogException
|
7 |
+
|
8 |
+
TMP_DIR = "tmp"
|
9 |
+
class WithDuckDBConnectionInTmpDir(object):
|
10 |
+
def __init__(self):
|
11 |
+
self.tmp_dir = TMP_DIR + str(uuid.uuid1())
|
12 |
+
os.makedirs(self.tmp_dir)
|
13 |
+
self.original_wd = os.getcwd()
|
14 |
+
|
15 |
+
def __enter__(self):
|
16 |
+
os.chdir(self.tmp_dir)
|
17 |
+
self.con = duckdb.connect()
|
18 |
+
self.con.execute("SET enable_external_access=False")
|
19 |
+
return self.con
|
20 |
+
|
21 |
+
def __exit__(self, *args):
|
22 |
+
self.con.close()
|
23 |
+
os.chdir(self.original_wd)
|
24 |
+
shutil.rmtree(self.tmp_dir)
|
25 |
+
|
26 |
+
def validate_query(query, schemas):
|
27 |
+
try:
|
28 |
+
with WithDuckDBConnectionInTmpDir() as duckdb_conn:
|
29 |
+
# register schemas
|
30 |
+
for schema in schemas.split(";"):
|
31 |
+
duckdb_conn.execute(schema)
|
32 |
+
cursor = duckdb_conn.cursor()
|
33 |
+
cursor.execute(query)
|
34 |
+
except ParserException as e:
|
35 |
+
raise e
|
36 |
+
except SyntaxException as e:
|
37 |
+
raise e
|
38 |
+
except BinderException as e:
|
39 |
+
raise e
|
40 |
+
except Exception as e:
|
41 |
+
message = str(e)
|
42 |
+
if "but it exists" in message and "extension" in message:
|
43 |
+
print(message)
|
44 |
+
elif message.startswith("Catalog Error: Table with name"):
|
45 |
+
raise e
|
46 |
+
elif "Catalog Error: Table Function with name" in message:
|
47 |
+
raise e
|
48 |
+
elif "Catalog Error: Copy Function" in message:
|
49 |
+
raise e
|
50 |
+
else:
|
51 |
+
print(message)
|
52 |
+
|
53 |
+
if __name__ == '__main__':
|
54 |
+
if len(sys.argv) > 2:
|
55 |
+
validate_query(sys.argv[1], sys.argv[2])
|
56 |
+
else:
|
57 |
+
print("No query provided.")
|