Spaces:
Running
Running
added azure endpoint
Browse files- MODEL_README.md +0 -156
- app.py +40 -3
MODEL_README.md
DELETED
@@ -1,156 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: llama2
|
3 |
-
inference:
|
4 |
-
parameters:
|
5 |
-
do_sample: false
|
6 |
-
max_length: 200
|
7 |
-
widget:
|
8 |
-
- text: "CREATE TABLE stadium (\n stadium_id number,\n location text,\n name text,\n capacity number,\n)\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many stadiums in total?\n\nSELECT"
|
9 |
-
example_title: "Number stadiums"
|
10 |
-
- text: "CREATE TABLE work_orders ( ID NUMBER, CREATED_AT TEXT, COST FLOAT, INVOICE_AMOUNT FLOAT, IS_DUE BOOLEAN, IS_OPEN BOOLEAN, IS_OVERDUE BOOLEAN, COUNTRY_NAME TEXT, )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many work orders are open?\n\nSELECT"
|
11 |
-
example_title: "Open work orders"
|
12 |
-
- text: "CREATE TABLE stadium ( stadium_id number, location text, name text, capacity number, highest number, lowest number, average number )\n\nCREATE TABLE singer ( singer_id number, name text, country text, song_name text, song_release_year text, age number, is_male others )\n\nCREATE TABLE concert ( concert_id number, concert_name text, theme text, stadium_id text, year text )\n\nCREATE TABLE singer_in_concert ( concert_id number, singer_id text )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- What is the maximum, the average, and the minimum capacity of stadiums ?\n\nSELECT"
|
13 |
-
example_title: "Stadium capacity"
|
14 |
-
---
|
15 |
-
|
16 |
-
# DucKDB-NSQL-7B
|
17 |
-
|
18 |
-
## Model Description
|
19 |
-
|
20 |
-
NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks.
|
21 |
-
|
22 |
-
In this repository we are introducing a new member of NSQL, DuckDB-NSQL. It's based on Meta's original [Llama-2 7B model](https://huggingface.co/meta-llama/Llama-2-7b) and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of DuckDB text-to-SQL pairs.
|
23 |
-
|
24 |
-
## Training Data
|
25 |
-
|
26 |
-
The general SQL queries are the SQL subset from [The Stack](https://huggingface.co/datasets/bigcode/the-stack), containing 1M training samples. The samples we transpiled to DuckDB SQL, using [sqlglot](https://github.com/tobymao/sqlglot). The labeled text-to-SQL pairs come [NSText2SQL](https://huggingface.co/datasets/NumbersStation/NSText2SQL) that were also transpiled to DuckDB SQL, and 200k synthetically generated DuckDB SQL queries, based on the DuckDB v.0.9.2 documentation.
|
27 |
-
|
28 |
-
## Evaluation Data
|
29 |
-
|
30 |
-
We evaluate our models on a DuckDB-specific benchmark that contains 75 text-to-SQL pairs. The benchmark is available [here](https://github.com/NumbersStationAI/DuckDB-NSQL/).
|
31 |
-
|
32 |
-
## Training Procedure
|
33 |
-
|
34 |
-
DuckDB-NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We pre-trained for 3 epochs and fine-tuned for 10 epochs.
|
35 |
-
|
36 |
-
## Intended Use and Limitations
|
37 |
-
|
38 |
-
The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputs.
|
39 |
-
In contrast to existing text-to-SQL models, the SQL generation is not contrained to `SELECT` statements, but can generate any valid DuckDB SQL statement, including statements for official DuckDB extensions.
|
40 |
-
|
41 |
-
## How to Use
|
42 |
-
|
43 |
-
Example 1:
|
44 |
-
|
45 |
-
```python
|
46 |
-
import torch
|
47 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/nsql-duckdb-7B")
|
49 |
-
model = AutoModelForCausalLM.from_pretrained("motherduckdb/nsql-duckdb-7B", torch_dtype=torch.bfloat16)
|
50 |
-
|
51 |
-
text = """CREATE TABLE stadium (
|
52 |
-
stadium_id number,
|
53 |
-
location text,
|
54 |
-
name text,
|
55 |
-
capacity number,
|
56 |
-
highest number,
|
57 |
-
lowest number,
|
58 |
-
average number
|
59 |
-
)
|
60 |
-
|
61 |
-
CREATE TABLE singer (
|
62 |
-
singer_id number,
|
63 |
-
name text,
|
64 |
-
country text,
|
65 |
-
song_name text,
|
66 |
-
song_release_year text,
|
67 |
-
age number,
|
68 |
-
is_male others
|
69 |
-
)
|
70 |
-
|
71 |
-
CREATE TABLE concert (
|
72 |
-
concert_id number,
|
73 |
-
concert_name text,
|
74 |
-
theme text,
|
75 |
-
stadium_id text,
|
76 |
-
year text
|
77 |
-
)
|
78 |
-
|
79 |
-
CREATE TABLE singer_in_concert (
|
80 |
-
concert_id number,
|
81 |
-
singer_id text
|
82 |
-
)
|
83 |
-
|
84 |
-
-- Using valid DuckDB SQL, answer the following questions for the tables provided above.
|
85 |
-
|
86 |
-
-- What is the maximum, the average, and the minimum capacity of stadiums ?
|
87 |
-
|
88 |
-
SELECT"""
|
89 |
-
|
90 |
-
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
91 |
-
|
92 |
-
generated_ids = model.generate(input_ids, max_length=500)
|
93 |
-
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
94 |
-
```
|
95 |
-
|
96 |
-
Example 2:
|
97 |
-
|
98 |
-
```python
|
99 |
-
import torch
|
100 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
101 |
-
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/nsql-duckdb-7B")
|
102 |
-
model = AutoModelForCausalLM.from_pretrained("motherduckdb/nsql-duckdb-7B", torch_dtype=torch.bfloat16)
|
103 |
-
|
104 |
-
text = """CREATE TABLE stadium (
|
105 |
-
stadium_id number,
|
106 |
-
location text,
|
107 |
-
name text,
|
108 |
-
capacity number,
|
109 |
-
)
|
110 |
-
|
111 |
-
-- Using valid DuckDB SQL, answer the following questions for the tables provided above.
|
112 |
-
|
113 |
-
-- how many stadiums in total?
|
114 |
-
|
115 |
-
SELECT"""
|
116 |
-
|
117 |
-
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
118 |
-
|
119 |
-
generated_ids = model.generate(input_ids, max_length=500)
|
120 |
-
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
121 |
-
```
|
122 |
-
|
123 |
-
Example 3:
|
124 |
-
|
125 |
-
```python
|
126 |
-
import torch
|
127 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
128 |
-
tokenizer = AutoTokenizer.from_pretrained("motherduckdb/nsql-duckdb-7B")
|
129 |
-
model = AutoModelForCausalLM.from_pretrained("motherduckdb/nsql-duckdb-7B", torch_dtype=torch.bfloat16)
|
130 |
-
|
131 |
-
text = """CREATE TABLE work_orders (
|
132 |
-
ID NUMBER,
|
133 |
-
CREATED_AT TEXT,
|
134 |
-
COST FLOAT,
|
135 |
-
INVOICE_AMOUNT FLOAT,
|
136 |
-
IS_DUE BOOLEAN,
|
137 |
-
IS_OPEN BOOLEAN,
|
138 |
-
IS_OVERDUE BOOLEAN,
|
139 |
-
COUNTRY_NAME TEXT,
|
140 |
-
)
|
141 |
-
|
142 |
-
-- Using valid DuckDB SQL, answer the following questions for the tables provided above.
|
143 |
-
|
144 |
-
-- how many work orders are open?
|
145 |
-
|
146 |
-
SELECT"""
|
147 |
-
|
148 |
-
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
149 |
-
|
150 |
-
generated_ids = model.generate(input_ids, max_length=500)
|
151 |
-
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
152 |
-
```
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
For more information (e.g., run with your local database), please find examples in [this repository](https://github.com/NumbersStationAI/DuckDB-NSQL).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -3,12 +3,24 @@ import requests
|
|
3 |
import subprocess
|
4 |
import re
|
5 |
import sys
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
PROMPT_TEMPLATE = """### Instruction:\n{instruction}\n\n### Input:\n{input}\n### Question:\n{question}\n\n### Response (use duckdb shorthand if possible):\n"""
|
8 |
INSTRUCTION_TEMPLATE = """Your task is to generate valid duckdb SQL to answer the following question{has_schema}""" # noqa: E501
|
9 |
ERROR_MESSAGE = ":red[ Quack! Much to our regret, SQL generation has gone a tad duck-side-down.\nThe model is currently not able to craft a correct SQL query for this request. \nSorry my duck friend. ]\n\n:red[If the question is about your own database, make sure to set the correct schema. Otherwise, try to rephrase your request. ]\n\n```sql\n{sql_query}\n```\n\n```sql\n{error_msg}\n```"
|
10 |
STOP_TOKENS = ["###", ";", "--", "```"]
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def generate_prompt(question, schema):
|
14 |
input = ""
|
@@ -34,10 +46,35 @@ def generate_prompt(question, schema):
|
|
34 |
)
|
35 |
return prompt
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def generate_sql(question, schema):
|
39 |
prompt = generate_prompt(question, schema)
|
40 |
-
|
41 |
s = requests.Session()
|
42 |
api_base = "https://text-motherduck-sql-fp16-4vycuix6qcp2.octoai.run"
|
43 |
url = f"{api_base}/v1/completions"
|
@@ -52,7 +89,7 @@ def generate_sql(question, schema):
|
|
52 |
headers = {"Authorization": f"Bearer {st.secrets['octoml_token']}"}
|
53 |
with s.post(url, json=body, headers=headers) as resp:
|
54 |
sql_query = resp.json()["choices"][0]["text"]
|
55 |
-
|
56 |
return sql_query
|
57 |
|
58 |
|
@@ -192,7 +229,7 @@ text_prompt = st.text_input(
|
|
192 |
)
|
193 |
|
194 |
if text_prompt:
|
195 |
-
sql_query =
|
196 |
valid, msg = validate_sql(sql_query, schema)
|
197 |
if not valid:
|
198 |
st.markdown(ERROR_MESSAGE.format(sql_query=sql_query, error_msg=msg))
|
|
|
3 |
import subprocess
|
4 |
import re
|
5 |
import sys
|
6 |
+
import urllib.request
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import ssl
|
10 |
+
import time
|
11 |
|
12 |
PROMPT_TEMPLATE = """### Instruction:\n{instruction}\n\n### Input:\n{input}\n### Question:\n{question}\n\n### Response (use duckdb shorthand if possible):\n"""
|
13 |
INSTRUCTION_TEMPLATE = """Your task is to generate valid duckdb SQL to answer the following question{has_schema}""" # noqa: E501
|
14 |
ERROR_MESSAGE = ":red[ Quack! Much to our regret, SQL generation has gone a tad duck-side-down.\nThe model is currently not able to craft a correct SQL query for this request. \nSorry my duck friend. ]\n\n:red[If the question is about your own database, make sure to set the correct schema. Otherwise, try to rephrase your request. ]\n\n```sql\n{sql_query}\n```\n\n```sql\n{error_msg}\n```"
|
15 |
STOP_TOKENS = ["###", ";", "--", "```"]
|
16 |
|
17 |
+
def allowSelfSignedHttps(allowed):
|
18 |
+
# bypass the server certificate verification on client side
|
19 |
+
if allowed and not os.environ.get('PYTHONHTTPSVERIFY', '') and getattr(ssl, '_create_unverified_context', None):
|
20 |
+
ssl._create_default_https_context = ssl._create_unverified_context
|
21 |
+
|
22 |
+
allowSelfSignedHttps(True) # this line is needed if you use self-signed certificate in your scoring service.
|
23 |
+
|
24 |
|
25 |
def generate_prompt(question, schema):
|
26 |
input = ""
|
|
|
46 |
)
|
47 |
return prompt
|
48 |
|
49 |
+
def generate_sql_azure(question, schema):
|
50 |
+
prompt = generate_prompt(question, schema)
|
51 |
+
start = time.time()
|
52 |
+
|
53 |
+
data={
|
54 |
+
"input_data": {
|
55 |
+
"input_string": [prompt],
|
56 |
+
"parameters":{
|
57 |
+
"top_p": 0.9,
|
58 |
+
"temperature": 0.1,
|
59 |
+
"max_new_tokens": 200,
|
60 |
+
"do_sample": True
|
61 |
+
}
|
62 |
+
}
|
63 |
+
}
|
64 |
+
body = str.encode(json.dumps(data))
|
65 |
+
|
66 |
+
url = 'https://motherduck-eu-west2-xbdfd.westeurope.inference.ml.azure.com/score'
|
67 |
+
headers = {'Content-Type':'application/json', 'Authorization':('Bearer '+ st.secrets['azure_ai_token']), 'azureml-model-deployment': 'motherduckdb-duckdb-nsql-7b-v-1' }
|
68 |
+
req = urllib.request.Request(url, body, headers)
|
69 |
+
raw_resp = urllib.request.urlopen(req)
|
70 |
+
resp = json.loads(raw_resp.read().decode("utf-8"))[0]["0"]
|
71 |
+
sql_query = resp[len(prompt):]
|
72 |
+
print(time.time()-start)
|
73 |
+
return sql_query
|
74 |
|
75 |
def generate_sql(question, schema):
|
76 |
prompt = generate_prompt(question, schema)
|
77 |
+
start = time.time()
|
78 |
s = requests.Session()
|
79 |
api_base = "https://text-motherduck-sql-fp16-4vycuix6qcp2.octoai.run"
|
80 |
url = f"{api_base}/v1/completions"
|
|
|
89 |
headers = {"Authorization": f"Bearer {st.secrets['octoml_token']}"}
|
90 |
with s.post(url, json=body, headers=headers) as resp:
|
91 |
sql_query = resp.json()["choices"][0]["text"]
|
92 |
+
print(time.time()-start)
|
93 |
return sql_query
|
94 |
|
95 |
|
|
|
229 |
)
|
230 |
|
231 |
if text_prompt:
|
232 |
+
sql_query = generate_sql_azure(text_prompt, schema)
|
233 |
valid, msg = validate_sql(sql_query, schema)
|
234 |
if not valid:
|
235 |
st.markdown(ERROR_MESSAGE.format(sql_query=sql_query, error_msg=msg))
|