File size: 7,812 Bytes
195fd31
 
 
 
 
 
 
4790cf8
195fd31
 
 
 
 
 
 
 
 
 
f570a28
195fd31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python3
import gradio as gr
import os
from main import load_moondream, process_video
import tempfile
import shutil
import torch
import spaces

# Get absolute path to workspace root
WORKSPACE_ROOT = os.path.dirname(os.path.abspath(__file__))


# Initialize model globally for reuse
print("Loading Moondream model...")
model, tokenizer = load_moondream()

# Uncomment for Hugging Face Spaces
@spaces.GPU(duration=120)
def process_video_file(
    video_file, detect_keyword, box_style, ffmpeg_preset, rows, cols, test_mode
):
    """Process a video file through the Gradio interface."""
    try:
        if not video_file:
            raise gr.Error("Please upload a video file")

        # Ensure input/output directories exist using absolute paths
        inputs_dir = os.path.join(WORKSPACE_ROOT, "inputs")
        outputs_dir = os.path.join(WORKSPACE_ROOT, "outputs")
        os.makedirs(inputs_dir, exist_ok=True)
        os.makedirs(outputs_dir, exist_ok=True)

        # Copy uploaded video to inputs directory
        video_filename = f"input_{os.path.basename(video_file)}"
        input_video_path = os.path.join(inputs_dir, video_filename)
        shutil.copy2(video_file, input_video_path)

        try:
            # Process the video
            output_path = process_video(
                input_video_path,
                detect_keyword,
                test_mode=test_mode,
                ffmpeg_preset=ffmpeg_preset,
                rows=rows,
                cols=cols,
                box_style=box_style,
            )

            # Verify output exists and is readable
            if not output_path or not os.path.exists(output_path):
                print(f"Warning: Output path {output_path} does not exist")
                # Try to find the output based on expected naming convention
                expected_output = os.path.join(
                    outputs_dir, f"{box_style}_{detect_keyword}_{video_filename}"
                )
                if os.path.exists(expected_output):
                    output_path = expected_output
                else:
                    # Try searching in outputs directory for any matching file
                    matching_files = [
                        f
                        for f in os.listdir(outputs_dir)
                        if f.startswith(f"{box_style}_{detect_keyword}_")
                    ]
                    if matching_files:
                        output_path = os.path.join(outputs_dir, matching_files[0])
                    else:
                        raise gr.Error("Failed to locate output video")

            # Convert output path to absolute path if it isn't already
            if not os.path.isabs(output_path):
                output_path = os.path.join(WORKSPACE_ROOT, output_path)

            print(f"Returning output path: {output_path}")
            return output_path

        finally:
            # Clean up input file
            try:
                if os.path.exists(input_video_path):
                    os.remove(input_video_path)
            except:
                pass

    except Exception as e:
        print(f"Error in process_video_file: {str(e)}")
        raise gr.Error(f"Error processing video: {str(e)}")


# Create the Gradio interface
with gr.Blocks(title="Promptable Video Redaction") as app:
    gr.Markdown("# Promptable Video Redaction with Moondream")
    gr.Markdown(
        """
    [Moondream 2B](https://github.com/vikhyat/moondream) is a lightweight vision model that detects and visualizes objects in videos. It can identify objects, people, text and more.

    Upload a video and specify what to detect. The app will process each frame and apply your chosen visualization style. For help, join the [Moondream Discord](https://discord.com/invite/tRUdpjDQfH).
    """
    )

    with gr.Row():
        with gr.Column():
            # Input components
            video_input = gr.Video(label="Upload Video")

            detect_input = gr.Textbox(
                label="What to Detect",
                placeholder="e.g. face, logo, text, person, car, dog, etc.",
                value="face",
                info="Moondream can detect anything that you can describe in natural language",
            )

            gr.Examples(
                examples=[
                    ["examples/homealone.mp4", "face"],
                    ["examples/soccer.mp4", "ball"],
                    ["examples/rally.mp4", "license plate"],
                ],
                inputs=[video_input, detect_input],
                label="Try these examples",
            )

            process_btn = gr.Button("Process Video", variant="primary")

            with gr.Accordion("Advanced Settings", open=False):
                box_style_input = gr.Radio(
                    choices=["censor", "bounding-box", "hitmarker"],
                    value="censor",
                    label="Visualization Style",
                    info="Choose how to display detections",
                )
                preset_input = gr.Dropdown(
                    choices=[
                        "ultrafast",
                        "superfast",
                        "veryfast",
                        "faster",
                        "fast",
                        "medium",
                        "slow",
                        "slower",
                        "veryslow",
                    ],
                    value="medium",
                    label="Processing Speed (faster = lower quality)",
                )
                with gr.Row():
                    rows_input = gr.Slider(
                        minimum=1, maximum=4, value=1, step=1, label="Grid Rows"
                    )
                    cols_input = gr.Slider(
                        minimum=1, maximum=4, value=1, step=1, label="Grid Columns"
                    )

                test_mode_input = gr.Checkbox(
                    label="Test Mode (Process first 3 seconds only)",
                    value=True,
                    info="Enable to quickly test settings on a short clip before processing the full video (recommended)",
                )

                gr.Markdown(
                    """
                Note: Processing in test mode will only process the first 3 seconds of the video and is recommended for testing settings.
                """
                )

                gr.Markdown(
                    """
                We can get a rough estimate of how long the video will take to process by multiplying the videos framerate * seconds * the number of rows and columns and assuming 0.12 seconds processing time per detection.
                For example, a 3 second video at 30fps with 2x2 grid, the estimated time is 3 * 30 * 2 * 2 * 0.12 = 43.2 seconds (tested on a 4090 GPU).
                """
                )

        with gr.Column():
            # Output components
            video_output = gr.Video(label="Processed Video")

            # About section under the video output
            gr.Markdown(
                """
            ### Links:
            - [GitHub Repository](https://github.com/vikhyat/moondream)
            - [Hugging Face](https://huggingface.co./vikhyatk/moondream2)
            - [Python Package](https://pypi.org/project/moondream/)
            - [Moondream Recipes](https://docs.moondream.ai/recipes)
            """
            )

    # Event handlers
    process_btn.click(
        fn=process_video_file,
        inputs=[
            video_input,
            detect_input,
            box_style_input,
            preset_input,
            rows_input,
            cols_input,
            test_mode_input,
        ],
        outputs=video_output,
    )

if __name__ == "__main__":
    app.launch(share=True)