import chainlit as cl from llama_index.llms import MonsterLLM from llama_index import VectorStoreIndex,SimpleDirectoryReader, ServiceContext from monsterapi import client as mclient import json def indexing(llm,path): documents = SimpleDirectoryReader(input_files=[path]).load_data() service_context = ServiceContext.from_defaults( chunk_size=1024, llm=llm, embed_model="local:BAAI/bge-small-en-v1.5" ) index = VectorStoreIndex.from_documents(documents, service_context=service_context, use_async=True) query_engine = index.as_query_engine() cl.user_session.set("engine", query_engine) def qa(sp,message): engine=cl.user_session.get("engine") message=message.content ques=sp+" "+message response=engine.query(ques) return response @cl.on_chat_start async def factory(): url = await cl.AskUserMessage(author="Beast",content="Enter URL of your deployment").send() index_ai = url['output'].find(".monsterapi.ai") url_ai = url['output'][:index_ai + len(".monsterapi.ai")] auth = await cl.AskUserMessage(author="Beast",content="Enter auth-token of your deployment").send() model = 'deploy-llm' llm = MonsterLLM(model=model,base_url=url_ai,monster_api_key=auth['output'],temperature=0.75, context_window=1024) service_client = mclient(api_key = auth['output'], base_url = url_ai) cl.user_session.set("service_client",service_client) cl.user_session.set("llm", llm) res = await cl.AskActionMessage(author="Beast", content="Do you want to enter system prompt?", actions=[ cl.Action(name="yes", value="yes", label="✅ Yes"), cl.Action(name="no", value="no", label="❌ No"), ], ).send() if res and res.get("value") == "yes": sp = await cl.AskUserMessage(author="Beast",content="Enter system prompt").send() msg=cl.Message(author="Beast",content="Noted. Go ahead as your questions!!") await msg.send() cl.user_session.set("sp", sp["output"]) else: await cl.Message(author="Beast",content="Okay, then you can start asking your questions!!").send() @cl.on_message async def main(message: cl.Message): service_client=cl.user_session.get("service_client") engine = cl.user_session.get("engine") llm=cl.user_session.get("llm") sp=cl.user_session.get("sp") if sp==None: sp="" if message.elements: go=True for file in message.elements: if "pdf" in file.mime: pdf=file else: await cl.Message(author="Beast",content="We only support PDF for now").send() go=False break if go: msg = cl.Message(author="Beast",content=f"Processing `{pdf.name}`...") await msg.send() await cl.make_async(indexing)(llm,pdf.path) msg.content = f"`{pdf.name}` processed." await msg.update() msg = cl.Message(author="Beast",content=f"Generating Response...") await msg.send() response =await cl.make_async(qa)(sp,message) print(response) msg.content = str(response) await msg.update() comp = await cl.AskActionMessage(author="Beast", content="Do you want answer without RAG?", actions=[ cl.Action(name="yes", value="yes", label="✅ Yes"), cl.Action(name="no", value="no", label="❌ No"), ], ).send() elif not message.elements and engine!=None: msg = cl.Message(author="Beast",content=f"Generating Response...") await msg.send() response =await cl.make_async(qa)(sp,message) print(response) msg.content = str(response) await msg.update() comp = await cl.AskActionMessage(author="Beast", content="Do you want answer without RAG?", actions=[ cl.Action(name="yes", value="yes", label="✅ Yes"), cl.Action(name="no", value="no", label="❌ No"), ], ).send() if (not message.elements and engine==None) or (comp.get("value") == "yes"): msg = cl.Message(author="Beast",content=f"Generating Response...") await msg.send() payload = { "input_variables": {"system": sp, "prompt":message.content}, "stream": False, "temperature": 0.6, "max_tokens": 512 } output = service_client.generate(model = "deploy-llm", data = payload) msg.content = str(output['text'][0]) await msg.update() else: cl.Message(author="Beast",content="Broken ;(")