Spaces:
Sleeping
Sleeping
monster119120
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,44 +3,48 @@ import os
|
|
3 |
os.system('pip install -r requirements.txt')
|
4 |
|
5 |
import streamlit as st
|
6 |
-
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
7 |
from datasets import load_dataset
|
8 |
import torch
|
9 |
import soundfile as sf
|
10 |
-
from transformers import pipeline
|
11 |
from PIL import Image
|
12 |
import io
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
image = st.file_uploader("Upload an image", type=["jpg", "png"])
|
18 |
-
|
19 |
-
question = st.text_input(
|
20 |
-
label="Enter your question",
|
21 |
-
value = "How many people and what is the color of this image?"
|
22 |
-
)
|
23 |
-
|
24 |
-
def generate_speech(text):
|
25 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
26 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
27 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
28 |
inputs = processor(text=text, return_tensors="pt")
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
os.system('pip install -r requirements.txt')
|
4 |
|
5 |
import streamlit as st
|
6 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, pipeline
|
7 |
from datasets import load_dataset
|
8 |
import torch
|
9 |
import soundfile as sf
|
|
|
10 |
from PIL import Image
|
11 |
import io
|
12 |
|
13 |
+
# 定义生成语音的函数
|
14 |
+
def generate_speech(text, model, processor, vocoder, speaker_embeddings):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
inputs = processor(text=text, return_tensors="pt")
|
16 |
+
generated_speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
17 |
+
sf.write("speech.wav", generated_speech.numpy(), samplerate=16000)
|
18 |
+
return "speech.wav"
|
19 |
+
|
20 |
+
# 初始化模型和处理器
|
21 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
22 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
23 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
24 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
25 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
26 |
+
|
27 |
+
# Streamlit UI
|
28 |
+
st.title('Visual Question Answering and Text-to-Speech App')
|
29 |
+
|
30 |
+
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png"])
|
31 |
+
default_question = "How many people and what is the color of this image?"
|
32 |
+
user_question = st.text_input("Enter your question", value=default_question)
|
33 |
+
|
34 |
+
if st.button("Answer and Generate Speech"):
|
35 |
+
if uploaded_image:
|
36 |
+
image = Image.open(io.BytesIO(uploaded_image.getvalue()))
|
37 |
+
vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
|
38 |
+
vqa_result = vqa_pipeline({"image": image, "question": user_question})
|
39 |
+
answer = vqa_result[0]['answer'] # Assume the answer is in the first result
|
40 |
+
|
41 |
+
display_text = f"Question: {user_question} Answer: {answer}"
|
42 |
+
st.write(display_text) # Display the answer
|
43 |
+
|
44 |
+
# Generate and play speech
|
45 |
+
audio_path = generate_speech(display_text, model, processor, vocoder, speaker_embeddings)
|
46 |
+
audio_file = open(audio_path, 'rb')
|
47 |
+
audio_bytes = audio_file.read()
|
48 |
+
st.audio(audio_bytes, format="audio/wav")
|
49 |
+
else:
|
50 |
+
st.write("Please upload an image and enter a question.")
|