import pandas as pd df = pd.read_json("hf://datasets/oussamachaouki/chatbot_tourisme/tourisme_chatbot.json") context_data = [] for i in range(len(df)): context = "" for j in range(1,4): context += df.columns[j] context += ": " context += df.iloc[i][j] context += " " context_data.append(context) import os # Get the secret key from the environment groq_key = os.environ.get('groq_api_key') ## LLM used for RAG from langchain_groq import ChatGroq llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key) ## Embedding model! from langchain_huggingface import HuggingFaceEmbeddings embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") # create vector store! from langchain_chroma import Chroma vectorstore = Chroma( collection_name="tourism_dataset_store", embedding_function=embed_model, persist_directory="./", ) # add data to vector nstore vectorstore.add_texts(context_data) retriever = vectorstore.as_retriever() from langchain_core.prompts import PromptTemplate template = ("""You are a Moroccan tourism expert. Use the provided context to answer the question. If you don't know the answer, say so. Explain your answer in detail. Do not discuss the context in your response; just provide the answer directly. Context: {context} Question: {question} Answer:""") rag_prompt = PromptTemplate.from_template(template) from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough rag_chain = ( {"context": retriever, "question": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser() ) import gradio as gr def rag_memory_stream(text): partial_text = "" for new_text in rag_chain.stream(text): partial_text += new_text yield partial_text examples = ['Tourist attraction sites in Morocco', 'What are some fun activities to do in Morocco?', 'What can I do in Marrakech 40000 Morocco?'] title = "Real-time AI App with Groq API and LangChain to Answer Morroco Tourism questions" demo = gr.Interface( title=title, fn=rag_memory_stream, inputs="text", outputs="text", examples=examples, allow_flagging="never", ) if __name__ == "__main__": demo.launch()