Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,3 @@
|
|
1 |
-
# # import warnings
|
2 |
-
# # warnings.filterwarnings('ignore')
|
3 |
-
|
4 |
-
# import pandas as pd
|
5 |
-
# df = pd.read_json("./tourisme_chatbot.json")
|
6 |
-
|
7 |
-
# context_data = []
|
8 |
-
# for i in range(len(df)):
|
9 |
-
# context = ""
|
10 |
-
# for j in range(4):
|
11 |
-
# context += df.columns[j]
|
12 |
-
# context += ": "
|
13 |
-
# context += df.iloc[i][j]
|
14 |
-
# context += " "
|
15 |
-
# context_data.append(context)
|
16 |
-
|
17 |
-
# # Get the secret key from the environment
|
18 |
-
# import os
|
19 |
-
# groq_api_key = os.environ.get('groq_api_keys')
|
20 |
-
|
21 |
-
# #LLM Used for RAG
|
22 |
-
# from langchain_groq import ChatGroq
|
23 |
-
|
24 |
-
# llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_api_key)
|
25 |
-
|
26 |
-
# #Embedding model
|
27 |
-
# from langchain_huggingface import HuggingFaceEmbeddings
|
28 |
-
# embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
29 |
-
|
30 |
-
# # create vector store!
|
31 |
-
# from langchain_chroma import Chroma
|
32 |
-
|
33 |
-
# vectorstore = Chroma(
|
34 |
-
# collection_name="tourism_dataset_store",
|
35 |
-
# embedding_function=embed_model,
|
36 |
-
# persist_directory="./",
|
37 |
-
# )
|
38 |
-
|
39 |
-
# # Add data to vector store
|
40 |
-
# vectorstore.add_texts(context_data)
|
41 |
-
|
42 |
-
# retriever = vectorstore.as_retriever()
|
43 |
-
|
44 |
-
# from langchain_core.prompts import PromptTemplate
|
45 |
-
|
46 |
-
# template = ("""You are a Moroccan tourism expert.
|
47 |
-
# Use the provided context to answer the question.
|
48 |
-
# If you don't know the answer, say so. Explain your answer in detail.
|
49 |
-
# Do not discuss the context in your response; just provide the answer directly.
|
50 |
-
|
51 |
-
# Context: {context}
|
52 |
-
|
53 |
-
# Question: {question}
|
54 |
-
|
55 |
-
# Answer:""")
|
56 |
-
|
57 |
-
# rag_prompt = PromptTemplate.from_template(template)
|
58 |
-
|
59 |
-
# from langchain_core.output_parsers import StrOutputParser
|
60 |
-
# from langchain_core.runnables import RunnablePassthrough
|
61 |
-
|
62 |
-
# rag_chain = (
|
63 |
-
# {"context": retriever, "question": RunnablePassthrough()}
|
64 |
-
# | rag_prompt
|
65 |
-
# | llm
|
66 |
-
# | StrOutputParser()
|
67 |
-
# )
|
68 |
-
|
69 |
-
# import gradio as gr
|
70 |
-
|
71 |
-
# def rag_memory_stream(text):
|
72 |
-
# partial_text = ""
|
73 |
-
# for new_text in rag_chain.stream(text):
|
74 |
-
# partial_text += new_text
|
75 |
-
# yield partial_text
|
76 |
-
|
77 |
-
# examples = ['Tourist attraction sites in Morocco', 'What are some fun activities to do in Morocco?']
|
78 |
-
|
79 |
-
# title = "Real-time AI App with Groq API and LangChain to Answer Morocco Tourism questions"
|
80 |
-
# demo = gr.Interface(
|
81 |
-
# title=title,
|
82 |
-
# fn=rag_memory_stream,
|
83 |
-
# inputs="text",
|
84 |
-
# outputs="text",
|
85 |
-
# allow_flagging="never",
|
86 |
-
# )
|
87 |
-
|
88 |
-
# if __name__ == '__main__':
|
89 |
-
# demo.launch()
|
90 |
import pandas as pd
|
91 |
import os
|
92 |
import gradio as gr
|
@@ -170,7 +81,7 @@ demo = gr.Interface(
|
|
170 |
fn=rag_memory_stream,
|
171 |
inputs="text",
|
172 |
outputs="text",
|
173 |
-
examples =
|
174 |
allow_flagging="never",
|
175 |
)
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import os
|
3 |
import gradio as gr
|
|
|
81 |
fn=rag_memory_stream,
|
82 |
inputs="text",
|
83 |
outputs="text",
|
84 |
+
examples = examples,
|
85 |
allow_flagging="never",
|
86 |
)
|
87 |
|