Spaces:
Running
Running
File size: 12,352 Bytes
1f47c3b 5000d19 1f47c3b 0d1ee8d 1f47c3b 0d1ee8d 1f47c3b 0d1ee8d 1f47c3b 0d1ee8d 1f47c3b 0d1ee8d 1f47c3b 5000d19 1f47c3b 9fa3b3c 1f47c3b 5000d19 1f47c3b 5000d19 1f47c3b 5000d19 1f47c3b 5000d19 1f47c3b 0d1ee8d 1f47c3b 5000d19 1f47c3b 5000d19 fceb303 1f47c3b 5000d19 1f47c3b 0d1ee8d 1f47c3b 5000d19 1f47c3b fceb303 1f47c3b fceb303 1f47c3b 5000d19 1f47c3b 5000d19 1f47c3b fceb303 1f47c3b 9fa3b3c 1f47c3b 0d1ee8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import os
import urllib.parse as urlparse
from dotenv import load_dotenv
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import NMF
from sklearn.manifold import TSNE
from yt_api import YouTubeAPI
from maps import lang_map
# Load app settings
load_dotenv()
YT_API_KEY = os.getenv('YT_API_KEY')
MAX_COMMENT_SIZE = int(os.getenv('MAX_COMMENT_SIZE'))
PRED_BATCH_SIZE = int(os.getenv('PRED_BATCH_SIZE'))
LANG_DETECTION_CONF = float(os.getenv('LANG_DETECTION_CONF'))
@st.cache_resource
def init_emotions_model():
classifier = pipeline(
task="text-classification",
model="SamLowe/roberta-base-go_emotions",
top_k=None)
return classifier
@st.cache_resource
def init_embedding_model():
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
return model
@st.cache_resource
def init_lang_model():
model_ckpt = "papluca/xlm-roberta-base-language-detection"
pipe = pipeline("text-classification", model=model_ckpt)
return pipe
def predict_emotions(df, clf):
"""
Predicts emotions for every `text_original` in a DataFrame `df` with a
classifier `clf`.
Returns a DataFrame with emotion columns.
"""
# Predict emotions in batches
text_list = df['text_original'].to_list()
batch_size = PRED_BATCH_SIZE
text_batches = [text_list[i:i + batch_size]
for i in range(0, len(text_list), batch_size)]
preds = [comment_emotions
for text_batch in text_batches
for comment_emotions in clf(text_batch)]
# Add predictions to DataFrame
preds_df = pd.DataFrame([{emotion['label']: emotion['score']
for emotion in pred} for pred in preds])
df = pd.concat([df, preds_df], axis=1)
return df
def detect_languages(df, clf):
"""
Detects languages for every `text_original` in a DataFrame `df` with a
classifier `clf`. Takes the language with the highest score.
Returns a DataFrame with `predicted_language` column.
"""
# Detect languages in batches
text_list = df['text_original'].to_list()
batch_size = PRED_BATCH_SIZE
text_batches = [text_list[i:i + batch_size]
for i in range(0, len(text_list), batch_size)]
preds = [batch_preds[0]['label']
if batch_preds[0]['score'] > LANG_DETECTION_CONF
else None
for text_batch in text_batches
for batch_preds in clf(text_batch, top_k=1, truncation=True)]
# Add predictions to DataFrame
df['predicted_language'] = preds
return df
def emotion_dist_plot(df, emotion_cols):
"""
Creates an emotion distribution plotly figure from `df` DataFrame
and `emotion_cols` and returns it.
"""
fig = px.bar(df[emotion_cols].sum().sort_values(ascending=False))
fig.update_layout(title_text="Emotion Distribution",
width=2000)
return fig
def nmf_plots(df,
nmf_components,
tfidf_max_features,
tfidf_stop_words='english'
):
"""
Converts all `text_original` values of `df` DataFrame to TF-IDF features
and performs Non-negative matrix factorization on them.
Returns a tuple of the modified DataFrame with NMF values and a list of
plotly figures (`df`, [plotly figures]).
"""
# Convert to TF-IDF features
vectorizer = TfidfVectorizer(max_features=tfidf_max_features,
stop_words=tfidf_stop_words)
embeddings = vectorizer.fit_transform(df['text_original'])
# Get feature_names (words) from the vectorizer
feature_names = vectorizer.get_feature_names_out()
# Perform NMF
nmf = NMF(n_components=nmf_components)
nmf_embeddings = nmf.fit_transform(embeddings).T
topic_cols = [f'topic_{topic_num+1}'
for topic_num in range(nmf_components)]
# Add NMF values to the DataFrame
for i, col in enumerate(topic_cols):
df[col] = nmf_embeddings[i]
# Create `main_topic` column with the highest value topic name
df['main_topic'] = df[topic_cols].apply(lambda row: row.idxmax(), axis=1)
# Get word values for every topic
word_df = pd.DataFrame(
nmf.components_.T,
columns=topic_cols,
index=feature_names
)
# Plot word distributions of each topic
topic_words_fig = make_subplots(
rows=1, cols=nmf_components,
subplot_titles=topic_cols)
for i, col in enumerate(topic_cols):
topic_words = word_df[col].sort_values(ascending=False)
top_topic_words = topic_words[:top_words_in_topic]
topic_words_fig.add_trace(go.Bar(y=top_topic_words.index,
x=top_topic_words.values,
orientation='h',
base=0),
row=1, col=i+1)
topic_words_fig.update_layout(title_text="Topic Word Distributions",
showlegend=False)
# Plot topic contribution for the dataset
for col in topic_cols:
df[col + '_cumsum'] = df[col].cumsum()
for col in topic_cols:
cumsum_sum = df[[col + '_cumsum' for col in topic_cols]].sum(axis=1)
df[col + '_percentage'] = df[col + '_cumsum'] / cumsum_sum
contributions_fig = stacked_area_plot(
x=df['published_at'],
y_list=[df[f'topic_{i+1}_percentage'] for i in range(nmf_components)],
names=topic_cols)
return df, [topic_words_fig, contributions_fig]
def tsne_plots(df, encoder, emotion_cols, tsne_color, tsne_perplexity):
"""
Encodes all `text_original` values of `df` DataFrame with `encoder`,
uses t-SNE algorithm for visualization on these embeddings and on
predicted emotions if they were predicted.
"""
# Encode and add embeddings to the DataFrame
embeddings = encoder.encode(df['text_original'])
embedding_cols = [f'embedding_{i+1}' for i in range(embeddings.shape[1])]
df = pd.concat([df, pd.DataFrame(embeddings, columns=embedding_cols)],
axis=1)
# t-SNE
TSNE_COMPONENTS = 2
tsne = TSNE(
n_components=2,
perplexity=tsne_perplexity,
)
# Also use predicted emotions
if emotion_cols:
tsne_cols = embedding_cols + emotion_cols
color = tsne_color
hover_data = ['first_emotion', 'second_emotion', 'text_original']
else:
tsne_cols = embedding_cols
color = None
hover_data = ['text_original']
if 'main_topic' in df.columns:
hover_data.append('main_topic')
# Color column
if 'main_topic' in df.columns or emotion_cols:
color = tsne_color
else:
color = None
tsne_results = tsne.fit_transform(df[tsne_cols])
tsne_results = pd.DataFrame(
tsne_results,
columns=[f'tsne_{i+1}' for i in range(TSNE_COMPONENTS)]
)
df = pd.concat([df, tsne_results], axis=1)
# 2D Visualization
fig2d = px.scatter(
df,
x='tsne_1',
y='tsne_2',
color=color,
hover_data=hover_data
)
fig2d.update_layout(
title_text="t-SNE Visualization"
)
# 3D Visualization with date as the third axis
fig3d = px.scatter_3d(
df,
x='published_at',
y='tsne_1',
z='tsne_2',
color=color,
hover_data=hover_data
)
fig3d.update_layout(
title_text="t-SNE Visualization Over Time",
height=800
)
return df, [fig2d, fig3d]
def stacked_area_plot(x, y_list, names):
"""Creates plotly stacked area plot. Returns a figure of that plot."""
fig = go.Figure()
for y, name in zip(y_list, names):
fig.add_trace(go.Scatter(
x=x, y=y*100,
mode='lines',
line=dict(width=0.5),
stackgroup='one',
name=name,
))
fig.update_layout(
showlegend=True,
xaxis_type='category',
yaxis=dict(
type='linear',
range=[0, 100],
ticksuffix='%')
)
fig.update_layout(title_text="Topic Contribution")
return fig
def add_top_2_emotions(row):
emotions = row[emotion_cols].sort_values(ascending=False)
row['first_emotion'] = emotions.index[0]
row['second_emotion'] = emotions.index[1]
return row
st.set_page_config(layout='wide')
st.title("Social-Stat")
# Load models
emotions_clf = init_emotions_model()
sentence_encoder = init_embedding_model()
lang_model = init_lang_model()
# Init YouTube API
yt_api = YouTubeAPI(
api_key=YT_API_KEY,
max_comment_size=MAX_COMMENT_SIZE
)
# Input form
with st.form(key='input'):
# Input
url_input = st.text_input("URL or ID")
# Get ID from URL
url_data = urlparse.urlparse(url_input)
query = urlparse.parse_qs(url_data.query)
if 'v' in query:
video_id = query['v'][0]
else:
video_id = url_input
# Emotions
emotions_checkbox = st.checkbox(
"Predict Emotions",
value=True,
)
# NMF
nmf_checkbox = st.checkbox(
"Non-Negative Matrix Factorization",
value=True,
)
nmf_components = st.slider(
"Topics (NMF Components)",
min_value=2,
max_value=12,
value=8,
step=1,
)
tfidf_max_features = st.select_slider(
"Words (TF-IDF Vectorizer Max Features)",
options=list(range(10, 501)) + [None],
value=100,
)
top_words_in_topic = st.slider(
"Top Topic Words",
min_value=1,
max_value=50,
value=10,
step=1,
)
# t-SNE
tsne_checkbox = st.checkbox(
"t-SNE Visualization",
value=True,
)
tsne_perplexity = st.slider(
"t-SNE Perplexity",
min_value=5,
max_value=50,
value=10,
step=1,
)
tsne_color = st.selectbox(
"Plot Color",
options=['main_topic', 'first_emotion', 'second_emotion']
)
# Language Map
map_checkbox = st.checkbox(
"Language Map",
value=True,
)
submit = st.form_submit_button("Analyze")
if submit:
# Get comments
try:
bad_id = False
comments = yt_api.get_comments(video_id)
except KeyError:
st.write("Video not found.")
st.write(query)
st.write('v' in query)
st.write(video_id)
bad_id = True
if not bad_id:
plots = []
# Convert to pandas DataFrame and sort by publishing date
df = pd.DataFrame(comments).sort_values('published_at')
emotion_cols = []
if emotions_checkbox:
# Predict emotions
df = predict_emotions(df, emotions_clf)
emotion_cols = list(df.columns[11:])
# Get emotion distribution figure
plots.append(emotion_dist_plot(df, emotion_cols))
# Get top 2 emotions
df = df.apply(add_top_2_emotions, axis=1)
if map_checkbox:
df = detect_languages(df, lang_model)
plots.append(lang_map(df))
if nmf_checkbox:
# NMF
df, nmf_figs = nmf_plots(df, nmf_components, tfidf_max_features)
plots.extend(nmf_figs)
if tsne_checkbox:
# t-SNE visualization
if not nmf_checkbox:
tsne_color = 'first_emotion'
if not emotions_checkbox:
tsne_color = 'main_topic'
df, tsne_figs = tsne_plots(df,
sentence_encoder,
emotion_cols,
tsne_color,
tsne_perplexity)
plots.extend(tsne_figs)
# Draw the plots
for i, plot in enumerate(plots):
st.plotly_chart(
plot, sharing='streamlit',
theme='streamlit',
use_container_width=True)
# Show the final DataFrame
st.dataframe(df)
|