Spaces:
No application file
No application file
File size: 3,976 Bytes
c99bde3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
get_ipython().system(' pip install transformers')
# In[2]:
import pandas as pd
import streamlit as st
import torch
from torch.utils.data import DataLoader ,Dataset
from transformers import AutoTokenizer,BertForQuestionAnswering,AutoModel
# In[3]:
from transformers import AutoTokenizer,BertForQuestionAnswering,AutoModel
model_checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
# In[4]:
from transformers import DataCollatorWithPadding
# In[5]:
torch.set_default_device('cpu')
# In[6]:
from transformers import BertTokenizer, BertModel
# In[7]:
class bert_compare(torch.nn.Module):
def __init__ (self):
super(bert_compare,self).__init__()
self.bert=BertModel.from_pretrained("bert-base-uncased")
self.Linear=torch.nn.Linear(768,30 )
self.elu=torch.nn.ELU()
self.Linear2=torch.nn.Linear(280 ,1 )
self.cnn1=torch.nn.Conv1d(768,256,kernel_size=2)
self.cnn2=torch.nn.Conv1d(256,10,kernel_size=2)
self.relu=torch.nn.ReLU()
def forward(self,x):
x=self.bert(**x).last_hidden_state
x=x.permute(0,2,1)
x=self.cnn1(x)
x=self.relu(x)
x=self.cnn2(x)
x=torch.nn.Flatten()(x)
x=self.Linear2(x)
return x
# In[8]:
model=bert_compare()
optim=torch.optim.AdamW(model.parameters(),lr=5e-5)
loss=torch.nn.BCEWithLogitsLoss()
# In[9]:
def tok(x,y):
out=tokenizer(x,y, truncation=True, max_length=30,padding='max_length', return_tensors="pt")
out={key:value for key,value in out.items()}
return out
h=tok('my name is mohamed','what is your name')
model(h)
# In[10]:
get_ipython().system(' pip install tqdm')
# In[11]:
from tqdm import tqdm
# In[12]:
model.train()
# In[13]:
model.bert.train()
# In[14]:
model=torch.load('Downloads/model9.pth',map_location=torch.device('cpu'))
# In[15]:
word=['my name is mohamed ', "How do I read and find my YouTube comments?" ,"How can I see all my Youtube comments?","How can Internet speed be increased by hacking through DNS?","What is the step by step guide to invest in share market in india?","where is capital of egypt?",'when did you born ','what is your name',"what is capital of egypt",'how old are you']
# In[16]:
def tok(x,y):
out=tokenizer(x,y, truncation=True, max_length=30,padding='max_length', return_tensors="pt")
out={key:value for key,value in out.items()}
return out
for i in range(9):
r=torch.randint(len(word),size=(1,))
r2=torch.randint(len(word),size=(1,))
h=tok(word[r],word[r2])
e=model(h)
ans= 'the same' if int(torch.sigmoid( e)>=.5) else 'not the same'
print (f'{word[r]} is {ans} {word[r2]}' )
# In[17]:
h=tok("what is capital of egypt","when is capital of egypt")
e=model(h)
ans= 'the same' if int(torch.sigmoid( e)>=.5) else 'not the same'
print (f' {ans} ' )
# In[19]:
def are_sentences_same(sentence1, sentence2):
doc1=tok(sentence1,sentence2)
out_model=model(doc2)
ans= 'the same' if int(torch.sigmoid( out_model)>=.5) else 'not the same'
return torch.sigmoid( ans)
def main():
st.title('Sentence Similarity Checker')
st.write('Enter two sentences to check if they are the same.')
# Input sentences
sentence1 = st.text_input('Enter the first sentence:')
sentence2 = st.text_input('Enter the second sentence:')
# Check if both sentences are provided
if sentence1 and sentence2:
similarity_score = are_sentences_same(sentence1, sentence2)
st.write(f'Similarity Score: {similarity_score:.2f}')
if similarity_score >= 0.5:
st.write('The sentences are very similar.')
else:
st.write('The sentences are different.')
if __name__ == '__main__':
main()
# In[ ]:
|