mnauf
commited on
Commit
·
fc36c8d
1
Parent(s):
b68a035
First deployment, all works locally
Browse files- .idea/.gitignore +3 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/redditGPT.iml +8 -0
- .idea/vcs.xml +6 -0
- __pycache__/model.cpython-38.pyc +0 -0
- __pycache__/sample.cpython-38.pyc +0 -0
- app.py +49 -0
- configurator.py +47 -0
- model.py +337 -0
- model/ckpt.pt +3 -0
- sample.py +87 -0
.idea/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="redgpt" project-jdk-type="Python SDK" />
|
4 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/redditGPT.iml" filepath="$PROJECT_DIR$/.idea/redditGPT.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/redditGPT.iml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="jdk" jdkName="redgpt" jdkType="Python SDK" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
</module>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
__pycache__/model.cpython-38.pyc
ADDED
Binary file (13.1 kB). View file
|
|
__pycache__/sample.cpython-38.pyc
ADDED
Binary file (2.89 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sample import generate_text
|
3 |
+
|
4 |
+
badges = """
|
5 |
+
<div style="display: flex">
|
6 |
+
<span style="margin-right: 5px">
|
7 |
+
<a href="https://www.linkedin.com/in/mnauf/" target="_blank"> <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/01/LinkedIn_Logo.svg/2560px-LinkedIn_Logo.svg.png" alt="Linkedin" width=100 height=auto> </a>
|
8 |
+
</span>
|
9 |
+
<span style="margin-right: 5px">
|
10 |
+
<a href="https://twitter.com/MNaufil" target="_blank"> <img src="https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white" alt="Twitter"> </a>
|
11 |
+
</span>
|
12 |
+
</div>
|
13 |
+
"""
|
14 |
+
|
15 |
+
description="""GPT2 finetuned on recent public anonymous conversations from Reddit to capture public sentiments regarding the recent unfolding events in Pakistan. Since the genaral public is afraid of speaking publicly with their identities exposed because of the crackdown, Reddit is the most genuine source we can get to understand the public sentiments. Data is collected from Pakistan, AskMiddleEast and WorldNews Reddit communities from last year until 25th May 2023."""
|
16 |
+
with gr.Blocks() as block:
|
17 |
+
# gr.Markdown("""![Imgur](https://i.imgur.com/iPZlUa8.png)""")
|
18 |
+
gr.HTML("<img src=https://i.imgur.com/iPZlUa8.png width=auto height=200>")
|
19 |
+
gr.Markdown(badges)
|
20 |
+
gr.Markdown(description)
|
21 |
+
with gr.Row():
|
22 |
+
input_text = gr.Textbox(
|
23 |
+
label="Input Text",
|
24 |
+
lines=1,
|
25 |
+
value="Imran Khan arrest",
|
26 |
+
elem_id="input_text"
|
27 |
+
)
|
28 |
+
|
29 |
+
output_text = gr.Textbox(
|
30 |
+
label="Output",
|
31 |
+
lines=10,
|
32 |
+
value="",
|
33 |
+
elem_id="input_text"
|
34 |
+
)
|
35 |
+
|
36 |
+
inputs = [input_text]
|
37 |
+
outputs = [output_text]
|
38 |
+
|
39 |
+
run_button = gr.Button(
|
40 |
+
value="Generate Text",
|
41 |
+
)
|
42 |
+
|
43 |
+
run_button.click(
|
44 |
+
fn=generate_text,
|
45 |
+
inputs=inputs,
|
46 |
+
outputs=outputs,
|
47 |
+
queue=True
|
48 |
+
)
|
49 |
+
block.queue(concurrency_count=3).launch(server_name="localhost")
|
configurator.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Poor Man's Configurator. Probably a terrible idea. Example usage:
|
3 |
+
$ python train.py config/override_file.py --batch_size=32
|
4 |
+
this will first run config/override_file.py, then override batch_size to 32
|
5 |
+
|
6 |
+
The code in this file will be run as follows from e.g. train.py:
|
7 |
+
>>> exec(open('configurator.py').read())
|
8 |
+
|
9 |
+
So it's not a Python module, it's just shuttling this code away from train.py
|
10 |
+
The code in this script then overrides the globals()
|
11 |
+
|
12 |
+
I know people are not going to love this, I just really dislike configuration
|
13 |
+
complexity and having to prepend config. to every single variable. If someone
|
14 |
+
comes up with a better simple Python solution I am all ears.
|
15 |
+
"""
|
16 |
+
|
17 |
+
import sys
|
18 |
+
from ast import literal_eval
|
19 |
+
|
20 |
+
for arg in sys.argv[1:]:
|
21 |
+
if '=' not in arg:
|
22 |
+
# assume it's the name of a config file
|
23 |
+
assert not arg.startswith('--')
|
24 |
+
config_file = arg
|
25 |
+
print(f"Overriding config with {config_file}:")
|
26 |
+
with open(config_file) as f:
|
27 |
+
print(f.read())
|
28 |
+
exec(open(config_file).read())
|
29 |
+
else:
|
30 |
+
# assume it's a --key=value argument
|
31 |
+
assert arg.startswith('--')
|
32 |
+
key, val = arg.split('=')
|
33 |
+
key = key[2:]
|
34 |
+
if key in globals():
|
35 |
+
try:
|
36 |
+
# attempt to eval it it (e.g. if bool, number, or etc)
|
37 |
+
attempt = literal_eval(val)
|
38 |
+
except (SyntaxError, ValueError):
|
39 |
+
# if that goes wrong, just use the string
|
40 |
+
attempt = val
|
41 |
+
# ensure the types match ok
|
42 |
+
assert type(attempt) == type(globals()[key])
|
43 |
+
# cross fingers
|
44 |
+
print(f"Overriding: {key} = {attempt}")
|
45 |
+
globals()[key] = attempt
|
46 |
+
else:
|
47 |
+
raise ValueError(f"Unknown config key: {key}")
|
model.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Full definition of a GPT Language Model, all of it in this single file.
|
3 |
+
References:
|
4 |
+
1) the official GPT-2 TensorFlow implementation released by OpenAI:
|
5 |
+
https://github.com/openai/gpt-2/blob/master/src/model.py
|
6 |
+
2) huggingface/transformers PyTorch implementation:
|
7 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
|
8 |
+
"""
|
9 |
+
|
10 |
+
import math
|
11 |
+
import inspect
|
12 |
+
from dataclasses import dataclass
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.nn import functional as F
|
17 |
+
|
18 |
+
# @torch.jit.script # good to enable when not using torch.compile, disable when using (our default)
|
19 |
+
def new_gelu(x):
|
20 |
+
"""
|
21 |
+
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT).
|
22 |
+
Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415
|
23 |
+
"""
|
24 |
+
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
25 |
+
|
26 |
+
class LayerNorm(nn.Module):
|
27 |
+
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
|
28 |
+
|
29 |
+
def __init__(self, ndim, bias):
|
30 |
+
super().__init__()
|
31 |
+
self.weight = nn.Parameter(torch.ones(ndim))
|
32 |
+
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
33 |
+
|
34 |
+
def forward(self, input):
|
35 |
+
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
|
36 |
+
|
37 |
+
class CausalSelfAttention(nn.Module):
|
38 |
+
|
39 |
+
def __init__(self, config):
|
40 |
+
super().__init__()
|
41 |
+
assert config.n_embd % config.n_head == 0
|
42 |
+
# key, query, value projections for all heads, but in a batch
|
43 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
44 |
+
# output projection
|
45 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
46 |
+
# regularization
|
47 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
48 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
49 |
+
self.n_head = config.n_head
|
50 |
+
self.n_embd = config.n_embd
|
51 |
+
self.dropout = config.dropout
|
52 |
+
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
|
53 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
54 |
+
if not self.flash:
|
55 |
+
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
56 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
57 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
58 |
+
.view(1, 1, config.block_size, config.block_size))
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
62 |
+
|
63 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
64 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
65 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
66 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
67 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
68 |
+
|
69 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
70 |
+
if self.flash:
|
71 |
+
# efficient attention using Flash Attention CUDA kernels
|
72 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
|
73 |
+
else:
|
74 |
+
# manual implementation of attention
|
75 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
76 |
+
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
|
77 |
+
att = F.softmax(att, dim=-1)
|
78 |
+
att = self.attn_dropout(att)
|
79 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
80 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
81 |
+
|
82 |
+
# output projection
|
83 |
+
y = self.resid_dropout(self.c_proj(y))
|
84 |
+
return y
|
85 |
+
|
86 |
+
class MLP(nn.Module):
|
87 |
+
|
88 |
+
def __init__(self, config):
|
89 |
+
super().__init__()
|
90 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
91 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
92 |
+
self.dropout = nn.Dropout(config.dropout)
|
93 |
+
|
94 |
+
def forward(self, x):
|
95 |
+
x = self.c_fc(x)
|
96 |
+
x = new_gelu(x)
|
97 |
+
x = self.c_proj(x)
|
98 |
+
x = self.dropout(x)
|
99 |
+
return x
|
100 |
+
|
101 |
+
class Block(nn.Module):
|
102 |
+
|
103 |
+
def __init__(self, config):
|
104 |
+
super().__init__()
|
105 |
+
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
|
106 |
+
self.attn = CausalSelfAttention(config)
|
107 |
+
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
|
108 |
+
self.mlp = MLP(config)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
x = x + self.attn(self.ln_1(x))
|
112 |
+
x = x + self.mlp(self.ln_2(x))
|
113 |
+
return x
|
114 |
+
|
115 |
+
@dataclass
|
116 |
+
class GPTConfig:
|
117 |
+
block_size: int = 1024
|
118 |
+
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
|
119 |
+
n_layer: int = 12
|
120 |
+
n_head: int = 12
|
121 |
+
n_embd: int = 768
|
122 |
+
dropout: float = 0.0
|
123 |
+
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
|
124 |
+
|
125 |
+
class GPT(nn.Module):
|
126 |
+
|
127 |
+
def __init__(self, config):
|
128 |
+
super().__init__()
|
129 |
+
assert config.vocab_size is not None
|
130 |
+
assert config.block_size is not None
|
131 |
+
self.config = config
|
132 |
+
|
133 |
+
self.transformer = nn.ModuleDict(dict(
|
134 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
135 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
136 |
+
drop = nn.Dropout(config.dropout),
|
137 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
138 |
+
ln_f = LayerNorm(config.n_embd, bias=config.bias),
|
139 |
+
))
|
140 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
141 |
+
# with weight tying when using torch.compile() some warnings get generated:
|
142 |
+
# "UserWarning: functional_call was passed multiple values for tied weights.
|
143 |
+
# This behavior is deprecated and will be an error in future versions"
|
144 |
+
# not 100% sure what this is, so far seems to be harmless. TODO investigate
|
145 |
+
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
|
146 |
+
|
147 |
+
# init all weights
|
148 |
+
self.apply(self._init_weights)
|
149 |
+
# apply special scaled init to the residual projections, per GPT-2 paper
|
150 |
+
for pn, p in self.named_parameters():
|
151 |
+
if pn.endswith('c_proj.weight'):
|
152 |
+
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
153 |
+
|
154 |
+
# report number of parameters
|
155 |
+
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
|
156 |
+
|
157 |
+
def get_num_params(self, non_embedding=True):
|
158 |
+
"""
|
159 |
+
Return the number of parameters in the model.
|
160 |
+
For non-embedding count (default), the position embeddings get subtracted.
|
161 |
+
The token embeddings would too, except due to the parameter sharing these
|
162 |
+
params are actually used as weights in the final layer, so we include them.
|
163 |
+
"""
|
164 |
+
n_params = sum(p.numel() for p in self.parameters())
|
165 |
+
if non_embedding:
|
166 |
+
n_params -= self.transformer.wpe.weight.numel()
|
167 |
+
return n_params
|
168 |
+
|
169 |
+
def _init_weights(self, module):
|
170 |
+
if isinstance(module, nn.Linear):
|
171 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
172 |
+
if module.bias is not None:
|
173 |
+
torch.nn.init.zeros_(module.bias)
|
174 |
+
elif isinstance(module, nn.Embedding):
|
175 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
176 |
+
|
177 |
+
def forward(self, idx, targets=None):
|
178 |
+
device = idx.device
|
179 |
+
b, t = idx.size()
|
180 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
181 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
|
182 |
+
|
183 |
+
# forward the GPT model itself
|
184 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
185 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd)
|
186 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
187 |
+
for block in self.transformer.h:
|
188 |
+
x = block(x)
|
189 |
+
x = self.transformer.ln_f(x)
|
190 |
+
|
191 |
+
if targets is not None:
|
192 |
+
# if we are given some desired targets also calculate the loss
|
193 |
+
logits = self.lm_head(x)
|
194 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
195 |
+
else:
|
196 |
+
# inference-time mini-optimization: only forward the lm_head on the very last position
|
197 |
+
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
|
198 |
+
loss = None
|
199 |
+
|
200 |
+
return logits, loss
|
201 |
+
|
202 |
+
def crop_block_size(self, block_size):
|
203 |
+
# model surgery to decrease the block size if necessary
|
204 |
+
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
|
205 |
+
# but want to use a smaller block size for some smaller, simpler model
|
206 |
+
assert block_size <= self.config.block_size
|
207 |
+
self.config.block_size = block_size
|
208 |
+
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
|
209 |
+
for block in self.transformer.h:
|
210 |
+
if hasattr(block.attn, 'bias'):
|
211 |
+
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
|
212 |
+
|
213 |
+
@classmethod
|
214 |
+
def from_pretrained(cls, model_type, override_args=None):
|
215 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
216 |
+
override_args = override_args or {} # default to empty dict
|
217 |
+
# only dropout can be overridden see more notes below
|
218 |
+
assert all(k == 'dropout' for k in override_args)
|
219 |
+
from transformers import GPT2LMHeadModel
|
220 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
221 |
+
|
222 |
+
# n_layer, n_head and n_embd are determined from model_type
|
223 |
+
config_args = {
|
224 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
225 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
226 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
227 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
228 |
+
}[model_type]
|
229 |
+
print("forcing vocab_size=50257, block_size=1024, bias=True")
|
230 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
231 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
232 |
+
config_args['bias'] = True # always True for GPT model checkpoints
|
233 |
+
# we can override the dropout rate, if desired
|
234 |
+
if 'dropout' in override_args:
|
235 |
+
print(f"overriding dropout rate to {override_args['dropout']}")
|
236 |
+
config_args['dropout'] = override_args['dropout']
|
237 |
+
# create a from-scratch initialized minGPT model
|
238 |
+
config = GPTConfig(**config_args)
|
239 |
+
model = GPT(config)
|
240 |
+
sd = model.state_dict()
|
241 |
+
sd_keys = sd.keys()
|
242 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
243 |
+
|
244 |
+
# init a huggingface/transformers model
|
245 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
246 |
+
sd_hf = model_hf.state_dict()
|
247 |
+
|
248 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
249 |
+
sd_keys_hf = sd_hf.keys()
|
250 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
251 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
252 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
253 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
254 |
+
# this means that we have to transpose these weights when we import them
|
255 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
256 |
+
for k in sd_keys_hf:
|
257 |
+
if any(k.endswith(w) for w in transposed):
|
258 |
+
# special treatment for the Conv1D weights we need to transpose
|
259 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
260 |
+
with torch.no_grad():
|
261 |
+
sd[k].copy_(sd_hf[k].t())
|
262 |
+
else:
|
263 |
+
# vanilla copy over the other parameters
|
264 |
+
assert sd_hf[k].shape == sd[k].shape
|
265 |
+
with torch.no_grad():
|
266 |
+
sd[k].copy_(sd_hf[k])
|
267 |
+
|
268 |
+
return model
|
269 |
+
|
270 |
+
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
|
271 |
+
# start with all of the candidate parameters
|
272 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
273 |
+
# filter out those that do not require grad
|
274 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
275 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
276 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
277 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
278 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
279 |
+
optim_groups = [
|
280 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
281 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
282 |
+
]
|
283 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
284 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
285 |
+
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
286 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
287 |
+
# Create AdamW optimizer and use the fused version if it is available
|
288 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
289 |
+
use_fused = fused_available and device_type == 'cuda'
|
290 |
+
extra_args = dict(fused=True) if use_fused else dict()
|
291 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
|
292 |
+
print(f"using fused AdamW: {use_fused}")
|
293 |
+
|
294 |
+
return optimizer
|
295 |
+
|
296 |
+
def estimate_mfu(self, fwdbwd_per_iter, dt):
|
297 |
+
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
|
298 |
+
# first estimate the number of flops we do per iteration.
|
299 |
+
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
|
300 |
+
N = self.get_num_params()
|
301 |
+
cfg = self.config
|
302 |
+
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
|
303 |
+
flops_per_token = 6*N + 12*L*H*Q*T
|
304 |
+
flops_per_fwdbwd = flops_per_token * T
|
305 |
+
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
|
306 |
+
# express our flops throughput as ratio of A100 bfloat16 peak flops
|
307 |
+
flops_achieved = flops_per_iter * (1.0/dt) # per second
|
308 |
+
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
|
309 |
+
mfu = flops_achieved / flops_promised
|
310 |
+
return mfu
|
311 |
+
|
312 |
+
@torch.no_grad()
|
313 |
+
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
314 |
+
"""
|
315 |
+
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
316 |
+
the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
317 |
+
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
318 |
+
"""
|
319 |
+
for _ in range(max_new_tokens):
|
320 |
+
# if the sequence context is growing too long we must crop it at block_size
|
321 |
+
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
322 |
+
# forward the model to get the logits for the index in the sequence
|
323 |
+
logits, _ = self(idx_cond)
|
324 |
+
# pluck the logits at the final step and scale by desired temperature
|
325 |
+
logits = logits[:, -1, :] / temperature
|
326 |
+
# optionally crop the logits to only the top k options
|
327 |
+
if top_k is not None:
|
328 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
329 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
330 |
+
# apply softmax to convert logits to (normalized) probabilities
|
331 |
+
probs = F.softmax(logits, dim=-1)
|
332 |
+
# sample from the distribution
|
333 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
334 |
+
# append sampled index to the running sequence and continue
|
335 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
336 |
+
|
337 |
+
return idx
|
model/ckpt.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14c4618927621adda0f0c2f7dd0e735be8f15f7202bc5011c1ad5f47b315c212
|
3 |
+
size 1493431654
|
sample.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Sample from a trained model
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import pickle
|
6 |
+
from contextlib import nullcontext
|
7 |
+
import torch
|
8 |
+
import tiktoken
|
9 |
+
from model import GPTConfig, GPT
|
10 |
+
import gradio as gr
|
11 |
+
# -----------------------------------------------------------------------------
|
12 |
+
init_from = 'resume' # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')
|
13 |
+
out_dir = 'model' # ignored if init_from is not 'resume'
|
14 |
+
start = "\n" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt"
|
15 |
+
num_samples = 1 # number of samples to draw
|
16 |
+
max_new_tokens = 500 # number of tokens generated in each sample
|
17 |
+
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
|
18 |
+
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
19 |
+
seed = 1337
|
20 |
+
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
21 |
+
dtype = 'bfloat16' # 'float32' or 'bfloat16' or 'float16'
|
22 |
+
compile = False # use PyTorch 2.0 to compile the model to be faster
|
23 |
+
exec(open('configurator.py').read()) # overrides from command line or config file
|
24 |
+
# -----------------------------------------------------------------------------
|
25 |
+
|
26 |
+
# torch.manual_seed(seed)
|
27 |
+
# torch.cuda.manual_seed(seed)
|
28 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
29 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
30 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
31 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
32 |
+
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
33 |
+
|
34 |
+
# model
|
35 |
+
if init_from == 'resume':
|
36 |
+
# init from a model saved in a specific directory
|
37 |
+
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
38 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
39 |
+
gptconf = GPTConfig(**checkpoint['model_args'])
|
40 |
+
model = GPT(gptconf)
|
41 |
+
state_dict = checkpoint['model']
|
42 |
+
unwanted_prefix = '_orig_mod.'
|
43 |
+
for k,v in list(state_dict.items()):
|
44 |
+
if k.startswith(unwanted_prefix):
|
45 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
46 |
+
model.load_state_dict(state_dict)
|
47 |
+
elif init_from.startswith('gpt2'):
|
48 |
+
# init from a given GPT-2 model
|
49 |
+
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
|
50 |
+
|
51 |
+
model.eval()
|
52 |
+
model.to(device)
|
53 |
+
if compile:
|
54 |
+
model = torch.compile(model) # requires PyTorch 2.0 (optional)
|
55 |
+
|
56 |
+
# look for the meta pickle in case it is available in the dataset folder
|
57 |
+
load_meta = False
|
58 |
+
if init_from == 'resume' and 'config' in checkpoint and 'dataset' in checkpoint['config']: # older checkpoints might not have these...
|
59 |
+
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
|
60 |
+
load_meta = os.path.exists(meta_path)
|
61 |
+
if load_meta:
|
62 |
+
print(f"Loading meta from {meta_path}...")
|
63 |
+
with open(meta_path, 'rb') as f:
|
64 |
+
meta = pickle.load(f)
|
65 |
+
# TODO want to make this more general to arbitrary encoder/decoder schemes
|
66 |
+
stoi, itos = meta['stoi'], meta['itos']
|
67 |
+
encode = lambda s: [stoi[c] for c in s]
|
68 |
+
decode = lambda l: ''.join([itos[i] for i in l])
|
69 |
+
else:
|
70 |
+
# ok let's assume gpt-2 encodings by default
|
71 |
+
print("No meta.pkl found, assuming GPT-2 encodings...")
|
72 |
+
enc = tiktoken.get_encoding("gpt2")
|
73 |
+
encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"})
|
74 |
+
decode = lambda l: enc.decode(l)
|
75 |
+
|
76 |
+
|
77 |
+
def generate_text(start):
|
78 |
+
start_ids = encode(start)
|
79 |
+
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
80 |
+
output = ""
|
81 |
+
# run generation
|
82 |
+
with torch.no_grad():
|
83 |
+
with ctx:
|
84 |
+
for k in range(num_samples):
|
85 |
+
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
86 |
+
output += decode(y[0].tolist())
|
87 |
+
return output
|