Spaces:
Running
on
L4
Running
on
L4
vineelpratap
commited on
Update asr_lm_eng.py
Browse files- asr_lm_eng.py +48 -63
asr_lm_eng.py
CHANGED
@@ -21,54 +21,56 @@ processor = AutoProcessor.from_pretrained(MODEL_ID)
|
|
21 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
22 |
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
|
70 |
def transcribe(audio_data=None, lang="eng (English)"):
|
71 |
|
|
|
|
|
72 |
if not audio_data:
|
73 |
return "<<ERROR: Empty Audio Input>>"
|
74 |
|
@@ -113,24 +115,7 @@ def transcribe(audio_data=None, lang="eng (English)"):
|
|
113 |
with torch.no_grad():
|
114 |
outputs = model(**inputs).logits
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
transcription = processor.decode(ids)
|
119 |
-
else:
|
120 |
-
assert False
|
121 |
-
# beam_search_result = beam_search_decoder(outputs.to("cpu"))
|
122 |
-
# transcription = " ".join(beam_search_result[0][0].words).strip()
|
123 |
|
124 |
return transcription
|
125 |
-
|
126 |
-
|
127 |
-
ASR_EXAMPLES = [
|
128 |
-
["upload/english.mp3", "eng (English)"],
|
129 |
-
# ["upload/tamil.mp3", "tam (Tamil)"],
|
130 |
-
# ["upload/burmese.mp3", "mya (Burmese)"],
|
131 |
-
]
|
132 |
-
|
133 |
-
ASR_NOTE = """
|
134 |
-
The above demo doesn't use beam-search decoding using a language model.
|
135 |
-
Checkout the instructions [here](https://huggingface.co/facebook/mms-1b-all) on how to run LM decoding for better accuracy.
|
136 |
-
"""
|
|
|
21 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
22 |
|
23 |
|
24 |
+
lm_decoding_config = {}
|
25 |
+
lm_decoding_configfile = hf_hub_download(
|
26 |
+
repo_id="facebook/mms-cclms",
|
27 |
+
filename="decoding_config.json",
|
28 |
+
subfolder="mms-1b-all",
|
29 |
+
)
|
30 |
+
|
31 |
+
with open(lm_decoding_configfile) as f:
|
32 |
+
lm_decoding_config = json.loads(f.read())
|
33 |
+
|
34 |
+
# allow language model decoding for "eng"
|
35 |
+
|
36 |
+
decoding_config = lm_decoding_config["eng"]
|
37 |
+
|
38 |
+
lm_file = hf_hub_download(
|
39 |
+
repo_id="facebook/mms-cclms",
|
40 |
+
filename=decoding_config["lmfile"].rsplit("/", 1)[1],
|
41 |
+
subfolder=decoding_config["lmfile"].rsplit("/", 1)[0],
|
42 |
+
)
|
43 |
+
token_file = hf_hub_download(
|
44 |
+
repo_id="facebook/mms-cclms",
|
45 |
+
filename=decoding_config["tokensfile"].rsplit("/", 1)[1],
|
46 |
+
subfolder=decoding_config["tokensfile"].rsplit("/", 1)[0],
|
47 |
+
)
|
48 |
+
lexicon_file = None
|
49 |
+
if decoding_config["lexiconfile"] is not None:
|
50 |
+
lexicon_file = hf_hub_download(
|
51 |
+
repo_id="facebook/mms-cclms",
|
52 |
+
filename=decoding_config["lexiconfile"].rsplit("/", 1)[1],
|
53 |
+
subfolder=decoding_config["lexiconfile"].rsplit("/", 1)[0],
|
54 |
+
)
|
55 |
+
|
56 |
+
beam_search_decoder = ctc_decoder(
|
57 |
+
lexicon=lexicon_file,
|
58 |
+
tokens=token_file,
|
59 |
+
lm=lm_file,
|
60 |
+
nbest=1,
|
61 |
+
beam_size=500,
|
62 |
+
beam_size_token=50,
|
63 |
+
lm_weight=float(decoding_config["lmweight"]),
|
64 |
+
word_score=float(decoding_config["wordscore"]),
|
65 |
+
sil_score=float(decoding_config["silweight"]),
|
66 |
+
blank_token="<s>",
|
67 |
+
)
|
68 |
|
69 |
|
70 |
def transcribe(audio_data=None, lang="eng (English)"):
|
71 |
|
72 |
+
assert lang.startswith("eng")
|
73 |
+
|
74 |
if not audio_data:
|
75 |
return "<<ERROR: Empty Audio Input>>"
|
76 |
|
|
|
115 |
with torch.no_grad():
|
116 |
outputs = model(**inputs).logits
|
117 |
|
118 |
+
beam_search_result = beam_search_decoder(outputs.to("cpu"))
|
119 |
+
transcription = " ".join(beam_search_result[0][0].words).strip()
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
return transcription
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|