import logging import string import random import copy import torch import torch.nn as nn from torch.cuda.amp import autocast as autocast from transformers import T5TokenizerFast from bliva.common.registry import registry from bliva.models.blip2 import Blip2Base, disabled_train from bliva.models.modeling_t5 import T5Config, T5ForConditionalGeneration from transformers.modeling_outputs import BaseModelOutput @registry.register_model("bliva_flant5") class BLIVAFlanT5(Blip2Base): PRETRAINED_MODEL_CONFIG_DICT = { "flant5xxl": "configs/models/bliva_flant5xxl.yaml", } def __init__( self, vit_model="eva_clip_g", img_size=224, drop_path_rate=0, use_grad_checkpoint=False, vit_precision="fp16", freeze_vit=True, num_query_token=32, t5_model="google/flan-t5-xl", prompt="", max_txt_len=128, max_output_txt_len=256, apply_lemmatizer=False, num_few_shot_examples=0, few_shot_prob=0, qformer_text_input=True, ): """ apply_lemmatizer: when set to True, postprocess predict_answers() result with lemmas. """ super().__init__() self.tokenizer = self.init_tokenizer(truncation_side="left") self.visual_encoder, self.ln_vision = self.init_vision_encoder( vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision ) if freeze_vit: for name, param in self.visual_encoder.named_parameters(): param.requires_grad = False self.visual_encoder = self.visual_encoder.eval() self.visual_encoder.train = disabled_train logging.info("freeze vision encoder") self.Qformer, self.query_tokens = self.init_Qformer( num_query_token, self.visual_encoder.num_features ) if not qformer_text_input: self.Qformer.bert.embeddings.word_embeddings = None self.Qformer.bert.embeddings.position_embeddings = None for layer in self.Qformer.bert.encoder.layer: layer.output = None layer.intermediate = None else: self.Qformer.resize_token_embeddings(len(self.tokenizer)) self.Qformer.cls = None self.t5_tokenizer = T5TokenizerFast.from_pretrained(t5_model, truncation_side='left') self.t5_output_tokenizer = T5TokenizerFast.from_pretrained(t5_model, truncation_side='right') t5_config = T5Config.from_pretrained(t5_model) t5_config.dense_act_fn = "gelu" self.t5_model = T5ForConditionalGeneration.from_pretrained( t5_model, config=t5_config ) for name, param in self.t5_model.named_parameters(): param.requires_grad = False param.data = param.data.bfloat16() self.t5_proj = nn.Linear( self.Qformer.config.hidden_size, self.t5_model.config.hidden_size ) self.max_txt_len = max_txt_len self.max_output_txt_len = max_output_txt_len self.prompt = prompt self._apply_lemmatizer = apply_lemmatizer self._lemmatizer = None self.num_few_shot_examples = num_few_shot_examples self.few_shot_prob = few_shot_prob self.qformer_text_input = qformer_text_input self.vision_project = nn.Linear(self.visual_encoder.num_features, self.t5_model.config.hidden_size) def forward(self, samples): image = samples["image"] image_features= self.visual_encoder.get_intermediate_layers(image)[-2] # [batch_size, 257, 1408] image_features = image_features[:, 1:] add_feature_llm = self.vision_project(image_features) atts_add_feature_llm = torch.ones(add_feature_llm.size()[:-1], dtype=torch.long).to(image.device) with self.maybe_autocast(): image_embeds = self.ln_vision(self.visual_encoder(image)) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device) query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) if self.qformer_text_input: text_Qformer = self.tokenizer( samples["text_input"], padding='longest', truncation=True, max_length=self.max_txt_len, return_tensors="pt", ).to(image.device) query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device) Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1) query_output = self.Qformer.bert( text_Qformer.input_ids, attention_mask=Qformer_atts, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) else: query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) inputs_t5 = self.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:]) atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device) fs_embeds, fs_atts = None, None if self.few_shot_prob > 0 and "few_shot_samples" in samples.keys(): fs_embeds, fs_atts = self.prepare_few_shot_embeds(samples['few_shot_samples']) with self.maybe_autocast(dtype=torch.bfloat16): input_tokens = self.t5_tokenizer( samples["text_input"], padding="longest", truncation=True, max_length=self.max_txt_len, return_tensors="pt", ).to(image.device) output_tokens = self.t5_output_tokenizer( samples["text_output"], padding="longest", truncation=True, max_length=self.max_output_txt_len, return_tensors="pt", ).to(image.device) encoder_atts = torch.cat([atts_t5, atts_add_feature_llm, input_tokens.attention_mask], dim=1) targets = output_tokens.input_ids.masked_fill( output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100 ) inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids) inputs_embeds = torch.cat([inputs_t5, add_feature_llm, inputs_embeds], dim=1) if fs_embeds is not None: inputs_embeds = torch.cat([fs_embeds, inputs_embeds], dim=1) encoder_atts = torch.cat([fs_atts, encoder_atts], dim=1) outputs = self.t5_model( inputs_embeds=inputs_embeds, attention_mask=encoder_atts, decoder_attention_mask=output_tokens.attention_mask, return_dict=True, labels=targets, ) loss = outputs.loss return {"loss": loss} def prepare_few_shot_embeds(self, samples): this_n_fs = random.choices( list(range(self.num_few_shot_examples + 1)), weights=[1 - self.few_shot_prob] + [self.few_shot_prob / self.num_few_shot_examples] * self.num_few_shot_examples )[0] if this_n_fs == 0: return None, None images = [] text_input = [] for sample in samples: for n in range(this_n_fs): images.append(sample['image'][n]) text_input.append(sample['text_input'][n]) images = torch.stack(images, dim=0) image = images with self.maybe_autocast(): image_embeds = self.ln_vision(self.visual_encoder(image)) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( image.device ) query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) if self.qformer_text_input: text_Qformer = self.tokenizer( text_input, padding='longest', truncation=True, max_length=self.max_txt_len, return_tensors="pt", ).to(image.device) query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device) Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1) query_output = self.Qformer.bert( text_Qformer.input_ids, attention_mask = Qformer_atts, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) else: query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) inputs_t5 = self.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:]) atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device) with self.maybe_autocast(dtype=torch.bfloat16): input_tokens = self.t5_tokenizer( text_input, padding="longest", truncation=True, max_length=self.max_txt_len, return_tensors="pt", ).to(image.device) encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1) inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids) inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1) if this_n_fs > 1: encoder_atts = encoder_atts.reshape(encoder_atts.size(0) // this_n_fs, encoder_atts.size(1) * this_n_fs) inputs_embeds = inputs_embeds.reshape(inputs_embeds.size(0) // this_n_fs, inputs_embeds.size(1) * this_n_fs, inputs_embeds.size(2)) return inputs_embeds, encoder_atts @torch.no_grad() def generate( self, samples, use_nucleus_sampling=False, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, num_captions=1, temperature=1, ): if "prompt" in samples.keys(): prompt = samples["prompt"] else: prompt = self.prompt image = samples["image"] bs = image.size(0) if isinstance(prompt, str): prompt = [prompt] * bs else: assert len(prompt) == bs, "The number of prompts must be equal to the batch size." # For TextCaps if "ocr_tokens" in samples.keys() and "{}" in prompt[0]: prompt = [p.format(', '.join(samples['ocr_tokens'][i][:30])) for i, p in enumerate(prompt)] if 'context' in samples.keys() and samples['context'] != '': prompt = [f'context: {samples["context"][i]}. {prompt[i]}' for i in range(len(prompt))] print('using context') query_tokens = self.query_tokens.expand(bs, -1, -1) if self.qformer_text_input: # remove ocr tokens in q_former (for eval textvqa) # qformer_prompt = prompt # qformer_prompt = ['Question: ' + qp.split(' Question: ')[1] for qp in qformer_prompt] text_Qformer = self.tokenizer( prompt, padding='longest', truncation=True, max_length=self.max_txt_len, return_tensors="pt", ).to(image.device) query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device) Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1) # For video data if image.dim() == 5: inputs_t5, atts_t5 = [], [] add_inputs_llm, add_atts_llm = [], [] for j in range(image.size(2)): this_frame = image[:,:,j,:,:] with self.maybe_autocast(): frame_embeds = self.ln_vision(self.visual_encoder(this_frame)) frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device) frame_features =self.visual_encoder.get_intermediate_layers(this_frame)[-2] frame_features = frame_features[:, 1:] add_feature_llm = self.vision_project(frame_features) atts_add_feature_llm = torch.ones(add_feature_llm.size()[:-1], dtype=torch.long).to(image.device) if self.qformer_text_input: frame_query_output = self.Qformer.bert( text_Qformer.input_ids, attention_mask = Qformer_atts, query_embeds=query_tokens, encoder_hidden_states=frame_embeds, encoder_attention_mask=frame_atts, return_dict=True, ) else: frame_query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=frame_embeds, encoder_attention_mask=frame_atts, return_dict=True, ) frame_inputs_t5 = self.t5_proj(frame_query_output.last_hidden_state[:,:query_tokens.size(1),:]) frame_atts_t5 = torch.ones(frame_inputs_t5.size()[:-1], dtype=torch.long).to(image.device) inputs_t5.append(frame_inputs_t5) atts_t5.append(frame_atts_t5) add_inputs_llm.append(add_feature_llm) add_atts_llm.append(atts_add_feature_llm) inputs_t5 = torch.cat(inputs_t5, dim=1) atts_t5 = torch.cat(atts_t5, dim=1) add_feature_llm = torch.cat(add_inputs_llm, dim=1) atts_add_feature_llm = torch.cat(add_atts_llm, dim=1) else: with self.maybe_autocast(): image_embeds = self.ln_vision(self.visual_encoder(image)) image_features= self.visual_encoder.get_intermediate_layers(image)[-2] image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device) image_features = image_features[:, 1:] add_feature_llm = self.vision_project(image_features) atts_add_feature_llm = torch.ones(add_feature_llm.size()[:-1], dtype=torch.long).to(image.device) if self.qformer_text_input: query_output = self.Qformer.bert( text_Qformer.input_ids, attention_mask=Qformer_atts, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) else: query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) inputs_t5 = self.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:]) atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device) input_tokens = self.t5_tokenizer( prompt, padding="longest", return_tensors="pt" ).to(image.device) encoder_atts = torch.cat([atts_t5, atts_add_feature_llm,input_tokens.attention_mask], dim=1) with self.maybe_autocast(dtype=torch.bfloat16): inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids) inputs_embeds = torch.cat([inputs_t5, add_feature_llm, inputs_embeds], dim=1) outputs = self.t5_model.generate( inputs_embeds=inputs_embeds, attention_mask=encoder_atts, do_sample=use_nucleus_sampling, top_p=top_p, temperature=temperature, num_beams=num_beams, max_new_tokens=max_length, min_length=min_length, repetition_penalty=repetition_penalty, length_penalty=length_penalty, num_return_sequences=num_captions, ) output_text = self.t5_tokenizer.batch_decode( outputs, skip_special_tokens=True ) return output_text def predict_answers( self, samples, num_beams=5, inference_method="generate", max_len=10, min_len=1, num_ans_candidates=128, answer_list=None, prompt="", length_penalty=-1, **kwargs ): if isinstance(samples["text_input"], str): samples["text_input"] = [samples["text_input"]] if prompt: if prompt.count("{}") == 2: if 'ocr_tokens' in samples: text_input = [ prompt.format(', '.join(samples['ocr_tokens'][i][:30]), samples["text_input"][i]) for i in range(len(samples["text_input"]))] elif 'choices' in samples: text_input = [] for i in range(len(samples["text_input"])): this_choices = [f"({string.ascii_lowercase[j]}) {ch}" for j, ch in enumerate(samples["choices"][i])] this_choices = " ".join(this_choices) text_input.append(prompt.format(samples["text_input"][i], this_choices)) else: text_input = [prompt.format(question) for question in samples["text_input"]] else: text_input = samples["text_input"] samples["prompt"] = text_input output_text = self.generate( samples, num_beams=num_beams, max_length=max_len, min_length=min_len, length_penalty=length_penalty ) if self._apply_lemmatizer or ("apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]): output_text = self._lemmatize(output_text) return output_text def predict_class( self, samples, candidates, n_segments=1, ): # If candidates is a list of lists, each sample has its candidates, then we need to iterate one by one if type(candidates[0]) == list: results = [] for i in range(samples["image"].size(0)): this_sample = { "image": samples["image"][i].unsqueeze(0), "prompt": samples["prompt"][i], } if "text_input" in samples.keys(): this_sample["text_input"] = [samples["text_input"][i]] if 'context' in samples.keys(): this_sample['context'] = [samples["context"][i]] if 'history' in samples.keys(): this_sample['history'] = [samples["history"][i]] if 'caption' in samples.keys(): this_sample['caption'] = [samples["caption"][i]] this_result = self._predict_class(this_sample, candidates[i], n_segments) results.append(this_result) try: results = torch.cat(results, dim=0) except: results = [res.tolist()[0] for res in results] return results return self._predict_class(samples, candidates, n_segments) def _predict_class( self, samples, candidates, n_segments=1, ): """ Args: samples (dict): A dictionary containing the following keys: - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) - prompt: the instruction candidates: (list): A list of candidate class names; n_segments: (int): Split the candidates into n_segments and predict one by one. This is useful when the number of candidates is too large. Returns: output_class: predicted class index """ image = samples["image"] prompt = samples["prompt"] bs = image.size(0) if isinstance(prompt, str): prompt = [prompt] * bs else: assert len(prompt) == bs, "The number of prompts must be equal to the batch size." if "text_input" in samples.keys(): if type(samples["text_input"][0]) == list: prompt = [prompt[i].format(*samples["text_input"][i]) for i in range(len(prompt))] else: prompt = [prompt[i].format(samples["text_input"][i]) for i in range(len(prompt))] # scienceqa if 'context' in samples.keys() and samples['context'] != '': prompt = [f'context: {samples["context"][i]}. {prompt[i]}' for i in range(len(prompt))] # visual dialog if 'history' in samples.keys() and samples['history'][0] != '': prompt = [f'dialog history: {samples["history"][i]}\n{prompt[i]}' for i in range(len(prompt))] if 'caption' in samples.keys() and samples['caption'][0] != '': prompt = [f'This image has the caption "{samples["caption"][i]}". {prompt[i]}' for i in range(len(prompt))] query_tokens = self.query_tokens.expand(bs, -1, -1) if self.qformer_text_input: text_Qformer = self.tokenizer( prompt, padding='longest', truncation=True, max_length=self.max_txt_len, return_tensors="pt" ).to(image.device) query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device) Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask], dim=1) if image.dim() == 5: inputs_t5, atts_t5 = [], [] add_inputs_llm, add_atts_llm = [], [] for j in range(image.size(2)): this_frame = image[:,:,j,:,:] with self.maybe_autocast(): frame_embeds = self.ln_vision(self.visual_encoder(this_frame)) frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device) frame_features =self.visual_encoder.get_intermediate_layers(this_frame)[-2] frame_features = frame_features[:, 1:] add_feature_llm = self.vision_project(frame_features) atts_add_feature_llm = torch.ones(add_feature_llm.size()[:-1], dtype=torch.long).to(image.device) if self.qformer_text_input: frame_query_output = self.Qformer.bert( text_Qformer.input_ids, attention_mask=Qformer_atts, query_embeds=query_tokens, encoder_hidden_states=frame_embeds, encoder_attention_mask=frame_atts, return_dict=True, ) else: frame_query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=frame_embeds, encoder_attention_mask=frame_atts, return_dict=True, ) frame_inputs_t5 = self.t5_proj(frame_query_output.last_hidden_state[:,:query_tokens.size(1),:]) frame_atts_t5 = torch.ones(frame_inputs_t5.size()[:-1], dtype=torch.long).to(image.device) inputs_t5.append(frame_inputs_t5) atts_t5.append(frame_atts_t5) add_inputs_llm.append(add_feature_llm) add_atts_llm.append(atts_add_feature_llm) inputs_t5 = torch.cat(inputs_t5, dim=1) atts_t5 = torch.cat(atts_t5, dim=1) add_feature_llm = torch.cat(add_inputs_llm, dim=1) atts_add_feature_llm = torch.cat(add_atts_llm, dim=1) else: with self.maybe_autocast(): image_embeds = self.ln_vision(self.visual_encoder(image)) image_features= self.visual_encoder.get_intermediate_layers(image)[-2] image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device) image_features = image_features[:, 1:] add_feature_llm = self.vision_project(image_features) atts_add_feature_llm = torch.ones(add_feature_llm.size()[:-1], dtype=torch.long).to(image.device) if self.qformer_text_input: query_output = self.Qformer.bert( text_Qformer.input_ids, attention_mask=Qformer_atts, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) else: query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) inputs_t5 = self.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:]) atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device) input_tokens = self.t5_tokenizer( prompt, padding="longest", return_tensors="pt" ).to(image.device) output_tokens = self.t5_tokenizer( candidates, padding="longest", return_tensors="pt" ).to(image.device) encoder_atts = torch.cat([atts_t5, atts_add_feature_llm, input_tokens.attention_mask], dim=1) n_cands = len(candidates) with self.maybe_autocast(dtype=torch.bfloat16): inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids) inputs_embeds = torch.cat([inputs_t5,add_feature_llm, inputs_embeds], dim=1) encoder_outputs = self.t5_model.encoder( inputs_embeds=inputs_embeds, attention_mask=encoder_atts, ) all_losses = [] for n in range(n_segments): seg_len = n_cands // n_segments if n == (n_segments - 1): seg_len = n_cands - seg_len * (n_segments - 1) # this_encoder_outputs = copy.deepcopy(encoder_outputs) this_encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0].clone(), ) this_encoder_outputs['last_hidden_state'] = this_encoder_outputs[0].repeat_interleave(seg_len, dim=0) this_encoder_atts = encoder_atts.repeat_interleave(seg_len, dim=0) start_i = n * (n_cands // n_segments) end_i = start_i + seg_len this_output_tokens_ids = output_tokens.input_ids[start_i:end_i].repeat(bs, 1) this_output_tokens_atts = output_tokens.attention_mask[start_i:end_i].repeat(bs, 1) this_targets = this_output_tokens_ids.masked_fill(this_output_tokens_ids == self.t5_tokenizer.pad_token_id, -100) outputs = self.t5_model( encoder_outputs=this_encoder_outputs, attention_mask=this_encoder_atts, decoder_attention_mask=this_output_tokens_atts, return_dict=True, labels=this_targets, reduction="none", ) loss = outputs.loss loss = loss.reshape(bs, seg_len) # output_class_ranks = torch.argsort(loss, dim=-1) all_losses.append(loss) all_losses = torch.cat(all_losses, dim=-1) output_class_ranks = torch.argsort(all_losses, dim=-1) # encoder_outputs['last_hidden_state'] = encoder_outputs[0].repeat_interleave(n_cands, dim=0) # encoder_atts = encoder_atts.repeat_interleave(n_cands, dim=0) # output_tokens.input_ids = output_tokens.input_ids.repeat(bs, 1) # output_tokens.attention_mask = output_tokens.attention_mask.repeat(bs, 1) # # compute the LM loss for each candidate (sum logprob across all tokens) and select the highest # targets = output_tokens.input_ids.masked_fill(output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100) # outputs = self.t5_model( # encoder_outputs=encoder_outputs, # attention_mask=encoder_atts, # decoder_attention_mask=output_tokens.attention_mask, # return_dict=True, # labels=targets, # reduction="none", # ) # loss = outputs.loss # loss = loss.reshape(bs, n_cands) # output_class_ranks = torch.argsort(loss, dim=-1) # (bs, num_candidates) return output_class_ranks def _lemmatize(self, answers): def apply(answer): doc = self.lemmatizer(answer) words = [] for token in doc: if token.pos_ in ["NOUN", "VERB"]: words.append(token.lemma_) else: words.append(token.text) answer = " ".join(words) return answer return [apply(answer) for answer in answers] @property def lemmatizer(self): if self._lemmatizer is None: try: import spacy self._lemmatizer = spacy.load("en_core_web_sm") except ImportError: logging.error( """ Please install spacy and en_core_web_sm model to apply lemmatization. python -m spacy download en_core_web_sm OR import spacy.cli spacy.cli.download("en_core_web_sm") """ ) exit(1) return self._lemmatizer @classmethod def from_config(cls, cfg): vit_model = cfg.get("vit_model", "eva_clip_g") img_size = cfg.get("image_size") num_query_token = cfg.get("num_query_token") t5_model = cfg.get("t5_model") drop_path_rate = cfg.get("drop_path_rate", 0) use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) vit_precision = cfg.get("vit_precision", "fp16") freeze_vit = cfg.get("freeze_vit", True) prompt = cfg.get("prompt", "") max_txt_len = cfg.get("max_txt_len", 128) max_output_txt_len = cfg.get("max_output_txt_len", 256) apply_lemmatizer = cfg.get("apply_lemmatizer", False) num_few_shot_examples = cfg.get("num_few_shot_examples", 0) few_shot_prob = cfg.get("few_shot_prob", 0.0) qformer_text_input = cfg.get("qformer_text_input", True) model = cls( vit_model=vit_model, img_size=img_size, drop_path_rate=drop_path_rate, use_grad_checkpoint=use_grad_checkpoint, vit_precision=vit_precision, freeze_vit=freeze_vit, num_query_token=num_query_token, t5_model=t5_model, prompt=prompt, max_txt_len=max_txt_len, max_output_txt_len=max_output_txt_len, apply_lemmatizer=apply_lemmatizer, num_few_shot_examples=num_few_shot_examples, few_shot_prob=few_shot_prob, qformer_text_input=qformer_text_input, ) # if qformer_text_input: # # Hard-coded to load from BLIP-2 stage-1 pre-trained model (not ideal) # model.load_from_pretrained( # url_or_filename="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained.pth" # ) model.load_checkpoint_from_config(cfg) return model