BLIVA / bliva /models /bliva_vicuna7b.py
gordonhubackup's picture
upload
e62d81d
import logging
import string
from packaging import version
import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn
import transformers
from bliva.common.registry import registry
from bliva.models.blip2 import Blip2Base, disabled_train
@registry.register_model("bliva_vicuna")
class BLIVAVicuna(Blip2Base):
PRETRAINED_MODEL_CONFIG_DICT = {
"vicuna7b": "configs/models/bliva_vicuna7b.yaml",
}
def __init__(
self,
vit_model="eva_clip_g",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
num_query_token=32,
llm_model="",
prompt="",
max_txt_len=128,
max_output_txt_len=256,
apply_lemmatizer=False,
qformer_text_input=True,
):
super().__init__()
transformers_version = version.parse(transformers.__version__)
assert transformers_version >= version.parse("4.28"), "BLIP-2 Vicuna requires transformers>=4.28"
from transformers import LlamaTokenizer
from bliva.models.modeling_llama import LlamaForCausalLM
self.tokenizer = self.init_tokenizer(truncation_side="left")
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
if freeze_vit:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
logging.info("freeze vision encoder")
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features
)
if not qformer_text_input:
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
else:
self.Qformer.resize_token_embeddings(len(self.tokenizer))
self.Qformer.cls = None
self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_model, use_fast=False, truncation_side="left")
self.llm_model = LlamaForCausalLM.from_pretrained(
llm_model, low_cpu_mem_usage=True, torch_dtype=torch.float16
).to('cuda:0') #load_in_8bit=True
self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.llm_tokenizer.add_special_tokens({'bos_token': '</s>'})
self.llm_tokenizer.add_special_tokens({'eos_token': '</s>'})
self.llm_tokenizer.add_special_tokens({'unk_token': '</s>'})
# self.llm_tokenizer.pad_token = self.llm_tokenizer.unk_token
self.llm_model.resize_token_embeddings(len(self.llm_tokenizer))
# self.eos_token_id = self.llm_tokenizer(
# self.llm_tokenizer.eos_token, add_special_tokens=False
# ).input_ids[0]
for name, param in self.llm_model.named_parameters():
param.requires_grad = False
self.llm_proj = nn.Linear(
self.Qformer.config.hidden_size, self.llm_model.config.hidden_size
)
self.max_txt_len = max_txt_len
self.max_output_txt_len = max_output_txt_len
self.prompt = prompt
prompt_tokens = self.llm_tokenizer(self.prompt, return_tensors="pt")
self.prompt_length = prompt_tokens.attention_mask.sum(1)
self._lemmatizer = None
self.qformer_text_input = qformer_text_input
self.vision_project = nn.Linear(self.visual_encoder.num_features, self.llm_model.config.hidden_size)
def concat_text_input_output(self, input_ids, input_atts, output_ids, output_atts):
input_part_targets_len = []
llm_tokens = {"input_ids": [], "attention_mask": []}
for i in range(input_ids.size(0)):
this_input_ones = input_atts[i].sum()
input_part_targets_len.append(this_input_ones)
llm_tokens['input_ids'].append(
torch.cat([
input_ids[i][:this_input_ones],
output_ids[i][1:],
input_ids[i][this_input_ones:]
])
)
llm_tokens['attention_mask'].append(
torch.cat([
input_atts[i][:this_input_ones],
output_atts[i][1:],
input_atts[i][this_input_ones:]
])
)
llm_tokens['input_ids'] = torch.stack(llm_tokens['input_ids'])
llm_tokens['attention_mask'] = torch.stack(llm_tokens['attention_mask'])
return llm_tokens, input_part_targets_len
def forward(self, samples):
# print('-----------------')
# print(samples["text_input"])
# print(samples["text_output"])
# print(samples["image"].shape)
# print('-----------------')
image = samples["image"]
image_features= self.visual_encoder.get_intermediate_layers(image)[-2] # [batch_size, 257, 1408]
image_features = image_features[:, 1:]
add_feature_llm = self.vision_project(image_features)
atts_add_feature_llm = torch.ones(add_feature_llm.size()[:-1], dtype=torch.long).to(image.device)
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
bs = image.size(0)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
if self.qformer_text_input:
text_Qformer = self.tokenizer(
samples["text_input"],
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask],dim=1)
query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_llm = self.llm_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long).to(image.device)
self.llm_tokenizer.padding_side = "right"
self.llm_tokenizer.truncation_side = 'left'
text_input_tokens = self.llm_tokenizer(
samples['text_input'],
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
).to(image.device)
self.llm_tokenizer.truncation_side = 'right'
text_output_tokens = self.llm_tokenizer(
[t + self.llm_tokenizer.eos_token for t in samples['text_output']],
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_output_txt_len,
).to(image.device)
llm_tokens, input_part_targets_len = self.concat_text_input_output(
text_input_tokens.input_ids,
text_input_tokens.attention_mask,
text_output_tokens.input_ids,
text_output_tokens.attention_mask,
)
# do not apply loss to the padding
targets = llm_tokens['input_ids'].masked_fill(
llm_tokens['input_ids'] == self.llm_tokenizer.pad_token_id, -100
)
# do not apply loss to the text input (i.e., instruction)
for i, l in enumerate(input_part_targets_len):
targets[i][:l] = -100
# do not apply loss to the query tokens
empty_targets = (
torch.ones(atts_llm.size(), dtype=torch.long).to(image.device).fill_(-100)
)
# do not apply loss to the additional image features
empty_add_targets = (
torch.ones(atts_add_feature_llm.size(), dtype=torch.long).to(image.device).fill_(-100)
)
#targets = torch.cat([empty_targets, targets], dim=1)
targets = torch.cat([empty_targets, empty_add_targets, targets], dim=1)
inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens['input_ids'])
#inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
#attention_mask = torch.cat([atts_llm, llm_tokens['attention_mask']], dim=1)
inputs_embeds = torch.cat([inputs_llm, add_feature_llm, inputs_embeds], dim=1)
attention_mask = torch.cat([atts_llm, atts_add_feature_llm, llm_tokens['attention_mask']], dim=1)
with self.maybe_autocast():
outputs = self.llm_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
@torch.no_grad()
def generate(
self,
samples,
use_nucleus_sampling=False,
num_beams=5,
max_length=256,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1,
num_captions=1,
temperature=1,
):
self.llm_tokenizer.padding_side = "left"
if "prompt" in samples.keys():
prompt = samples["prompt"]
else:
prompt = samples["text_input"]
image = samples["image"]
bs = image.size(0)
# if isinstance(prompt, str):
# prompt = [prompt] * bs
# else:
# assert len(prompt) == bs, "The number of prompts must be equal to the batch size."
# For TextCaps
if "ocr_tokens" in samples.keys() and "{}" in prompt[0]:
prompt = [p.format(', '.join(samples['ocr_tokens'][i][:30])) for i, p in enumerate(prompt)]
if 'context' in samples.keys() and samples['context'] != '':
prompt = [f'context: {samples["context"][i]}. {prompt[i]}' for i in range(len(prompt))]
print('using context')
query_tokens = self.query_tokens.expand(bs, -1, -1)
if self.qformer_text_input:
# remove ocr tokens in q_former (for eval textvqa)
# qformer_prompt = prompt
# qformer_prompt = ['Question: ' + qp.split(' Question: ')[1] for qp in qformer_prompt]
text_Qformer = self.tokenizer(
prompt,
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
# For video data
if image.dim() == 5:
inputs_llm, atts_llm = [], []
add_inputs_llm, add_atts_llm = [], []
for j in range(image.size(2)):
this_frame = image[:,:,j,:,:]
with self.maybe_autocast():
frame_embeds = self.ln_vision(self.visual_encoder(this_frame))
frame_features =self.visual_encoder.get_intermediate_layers(this_frame)[-2]
frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device)
frame_features = frame_features[:, 1:]
add_feature_llm = self.vision_project(frame_features)
atts_add_feature_llm = torch.ones(add_feature_llm.size()[:-1], dtype=torch.long).to(image.device)
if self.qformer_text_input:
frame_query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=frame_embeds,
encoder_attention_mask=frame_atts,
return_dict=True,
)
else:
frame_query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=frame_embeds,
encoder_attention_mask=frame_atts,
return_dict=True,
)
frame_inputs_llm = self.llm_proj(frame_query_output.last_hidden_state[:,:query_tokens.size(1),:])
frame_atts_llm = torch.ones(frame_inputs_llm.size()[:-1], dtype=torch.long).to(image.device)
inputs_llm.append(frame_inputs_llm)
atts_llm.append(frame_atts_llm)
add_inputs_llm.append(add_feature_llm)
add_atts_llm.append(atts_add_feature_llm)
inputs_llm = torch.cat(inputs_llm, dim=1)
atts_llm = torch.cat(atts_llm, dim=1)
add_feature_llm = torch.cat(add_inputs_llm, dim=1)
atts_add_feature_llm = torch.cat(add_atts_llm, dim=1)
else:
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_features= self.visual_encoder.get_intermediate_layers(image)[-2] # [batch_size, 257, 1408]
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
image_features = image_features[:, 1:]
add_feature_llm = self.vision_project(image_features)
atts_add_feature_llm = torch.ones(add_feature_llm.size()[:-1], dtype=torch.long).to(image.device)
if self.qformer_text_input:
query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_llm = self.llm_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long).to(image.device)
llm_tokens = self.llm_tokenizer(
prompt,
padding="longest",
return_tensors="pt"
).to(image.device)
with self.maybe_autocast():
inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens.input_ids)
# inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
# attention_mask = torch.cat([atts_llm, llm_tokens.attention_mask], dim=1)
inputs_embeds = torch.cat([inputs_llm, add_feature_llm, inputs_embeds], dim=1)
attention_mask = torch.cat([atts_llm, atts_add_feature_llm, llm_tokens['attention_mask']], dim=1)
outputs = self.llm_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
do_sample=use_nucleus_sampling,
top_p=top_p,
temperature=temperature,
num_beams=num_beams,
max_length=max_length,
min_length=min_length,
# eos_token_id=self.eos_token_id,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_captions,
)
outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id)
output_text = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True)
output_text = [text.strip() for text in output_text]
return output_text
def predict_answers(
self,
samples,
num_beams=5,
inference_method="generate",
max_len=10,
min_len=1,
num_ans_candidates=128,
answer_list=None,
prompt="",
length_penalty=0,
**kwargs
):
if isinstance(samples["text_input"], str):
samples["text_input"] = [samples["text_input"]]
if prompt:
if prompt.count("{}") == 2:
if 'ocr_tokens' in samples:
text_input = [
prompt.format(', '.join(samples['ocr_tokens'][i][:30]), samples["text_input"][i])
for i in range(len(samples["text_input"]))]
elif 'choices' in samples:
text_input = []
for i in range(len(samples["text_input"])):
this_choices = [f"({string.ascii_lowercase[j]}) {ch}" for j, ch in enumerate(samples["choices"][i])]
this_choices = " ".join(this_choices)
text_input.append(prompt.format(samples["text_input"][i], this_choices))
else:
text_input = [prompt.format(question) for question in samples["text_input"]]
else:
text_input = samples["text_input"]
samples["prompt"] = text_input
output_text = self.generate(
samples,
num_beams=num_beams,
max_length=max_len,
min_length=min_len,
length_penalty=length_penalty
)
if "apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]:
output_text = self._lemmatize(output_text)
return output_text
def predict_class(
self,
samples,
candidates,
n_segments=1,
):
self.llm_tokenizer.padding_side = "left"
# If candidates is a list of lists, each sample has its candidates, then we need to iterate one by one
if type(candidates[0]) == list:
results = []
for i in range(samples["image"].size(0)):
this_sample = {
"image": samples["image"][i].unsqueeze(0),
"prompt": samples["prompt"][i],
}
if "text_input" in samples.keys():
this_sample["text_input"] = [samples["text_input"][i]]
if 'context' in samples.keys():
this_sample['context'] = [samples["context"][i]]
if 'history' in samples.keys():
this_sample['history'] = [samples["history"][i]]
if 'caption' in samples.keys():
this_sample['caption'] = [samples["caption"][i]]
this_result = self._predict_class(this_sample, candidates[i], n_segments)
results.append(this_result)
try:
results = torch.cat(results, dim=0)
except:
results = [res.tolist()[0] for res in results]
return results
return self._predict_class(samples, candidates, n_segments)
def _predict_class(
self,
samples,
candidates,
n_segments=1,
):
image = samples["image"]
prompt = samples["prompt"]
bs = image.size(0)
if isinstance(prompt, str):
prompt = [prompt] * bs
else:
assert len(prompt) == bs, "The number of prompts must be equal to the batch size."
if "text_input" in samples.keys():
if type(samples["text_input"][0]) == list:
prompt = [prompt[i].format(*samples["text_input"][i]) for i in range(len(prompt))]
else:
prompt = [prompt[i].format(samples["text_input"][i]) for i in range(len(prompt))]
# scienceqa
if 'context' in samples.keys() and samples['context'] != '':
prompt = [f'context: {samples["context"][i]}. {prompt[i]}' for i in range(len(prompt))]
# visual dialog
if 'history' in samples.keys() and samples['history'][0] != '':
prompt = [f'dialog history: {samples["history"][i]}\n{prompt[i]}' for i in range(len(prompt))]
if 'caption' in samples.keys() and samples['caption'][0] != '':
prompt = [f'This image has the caption "{samples["caption"][i]}". {prompt[i]}' for i in range(len(prompt))]
query_tokens = self.query_tokens.expand(bs, -1, -1)
if self.qformer_text_input:
text_Qformer = self.tokenizer(
prompt,
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt"
).to(image.device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
# For video data
if image.dim() == 5:
inputs_llm, atts_llm = [], []
add_inputs_llm, add_atts_llm = [], []
for j in range(image.size(2)):
this_frame = image[:,:,j,:,:]
with self.maybe_autocast():
frame_embeds = self.ln_vision(self.visual_encoder(this_frame))
frame_features =self.visual_encoder.get_intermediate_layers(this_frame)[-2]
frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device)
frame_features = frame_features[:, 1:]
add_feature_llm = self.vision_project(frame_features)
atts_add_feature_llm = torch.ones(add_feature_llm.size()[:-1], dtype=torch.long).to(image.device)
if self.qformer_text_input:
frame_query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=frame_embeds,
encoder_attention_mask=frame_atts,
return_dict=True,
)
else:
frame_query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=frame_embeds,
encoder_attention_mask=frame_atts,
return_dict=True,
)
frame_inputs_llm = self.llm_proj(frame_query_output.last_hidden_state[:,:query_tokens.size(1),:])
frame_atts_llm = torch.ones(frame_inputs_llm.size()[:-1], dtype=torch.long).to(image.device)
inputs_llm.append(frame_inputs_llm)
atts_llm.append(frame_atts_llm)
add_inputs_llm.append(add_feature_llm)
add_atts_llm.append(atts_add_feature_llm)
inputs_llm = torch.cat(inputs_llm, dim=1)
atts_llm = torch.cat(atts_llm, dim=1)
add_feature_llm = torch.cat(add_inputs_llm, dim=1)
atts_add_feature_llm = torch.cat(add_atts_llm, dim=1)
else:
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_features= self.visual_encoder.get_intermediate_layers(image)[-2] # [batch_size, 257, 1408]
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
image_features = image_features[:, 1:]
add_feature_llm = self.vision_project(image_features)
atts_add_feature_llm = torch.ones(add_feature_llm.size()[:-1], dtype=torch.long).to(image.device)
if self.qformer_text_input:
query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_llm = self.llm_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long).to(image.device)
self.llm_tokenizer.padding_side = "right"
self.llm_tokenizer.truncation_side = 'left'
text_input_tokens = self.llm_tokenizer(
prompt,
return_tensors="pt",
padding="longest",
# truncation=True,
# max_length=self.max_txt_len,
).to(image.device)
empty_targets = torch.ones(atts_llm.size(), dtype=torch.long).to(image.device).fill_(-100)
empty_add_targets = (
torch.ones(atts_add_feature_llm.size(), dtype=torch.long).to(image.device).fill_(-100)
)
# self.llm_tokenizer.padding_side = "right"
self.llm_tokenizer.truncation_side = 'right'
n_cands = len(candidates)
with self.maybe_autocast(dtype=torch.bfloat16):
all_losses = []
for n in range(n_segments):
seg_len = n_cands // n_segments
if n == (n_segments - 1):
seg_len = n_cands - seg_len * (n_segments - 1)
start_i = n * (n_cands // n_segments)
end_i = start_i + seg_len
this_output_tokens = self.llm_tokenizer(
candidates[start_i:end_i],
return_tensors="pt",
padding="longest",
# truncation=True,
# max_length=self.max_output_txt_len,
).to(image.device)
this_input_tokens_ids = text_input_tokens.input_ids.repeat_interleave(seg_len, dim=0)
this_input_tokens_atts = text_input_tokens.attention_mask.repeat_interleave(seg_len, dim=0)
this_output_tokens_ids = this_output_tokens.input_ids.repeat(bs, 1)
this_output_tokens_atts = this_output_tokens.attention_mask.repeat(bs, 1)
this_llm_tokens, this_input_targets_len = self.concat_text_input_output(
this_input_tokens_ids,
this_input_tokens_atts,
this_output_tokens_ids,
this_output_tokens_atts
)
this_llm_input_ids = this_llm_tokens['input_ids']
this_llm_atts = this_llm_tokens['attention_mask']
# this_llm_input_ids = torch.cat([this_input_tokens_ids, this_output_tokens_ids], dim=1)
# this_llm_atts = torch.cat([this_input_tokens_atts, this_output_tokens_atts], dim=1)
inputs_embeds = self.llm_model.get_input_embeddings()(this_llm_input_ids)
inputs_embeds = torch.cat([inputs_llm.repeat_interleave(seg_len, dim=0), \
add_feature_llm.repeat_interleave(seg_len, dim=0), inputs_embeds], dim=1)
attention_mask = torch.cat([atts_llm.repeat_interleave(seg_len, dim=0), \
atts_add_feature_llm.repeat_interleave(seg_len, dim=0) ,this_llm_atts], dim=1)
this_targets = this_llm_input_ids.masked_fill(this_llm_input_ids == self.llm_tokenizer.pad_token_id, -100)
# this_targets[:, :this_input_tokens_ids.size(1)] = -100
for i, l in enumerate(this_input_targets_len):
this_targets[i][:l] = -100
this_targets = torch.cat([empty_targets.repeat_interleave(seg_len, dim=0), \
empty_add_targets.repeat_interleave(seg_len, dim=0) ,this_targets], dim=1)
outputs = self.llm_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=this_targets,
reduction="none",
)
loss = outputs.loss
loss = loss.reshape(bs, seg_len)
# output_class_ranks = torch.argsort(loss, dim=-1)
all_losses.append(loss)
all_losses = torch.cat(all_losses, dim=-1)
output_class_ranks = torch.argsort(all_losses, dim=-1)
return output_class_ranks
def _lemmatize(self, answers):
def apply(answer):
doc = self.lemmatizer(answer)
words = []
for token in doc:
if token.pos_ in ["NOUN", "VERB"]:
words.append(token.lemma_)
else:
words.append(token.text)
answer = " ".join(words)
return answer
return [apply(answer) for answer in answers]
@property
def lemmatizer(self):
if self._lemmatizer is None:
try:
import spacy
self._lemmatizer = spacy.load("en_core_web_sm")
except ImportError:
logging.error(
"""
Please install spacy and en_core_web_sm model to apply lemmatization.
python -m spacy download en_core_web_sm
OR
import spacy.cli
spacy.cli.download("en_core_web_sm")
"""
)
exit(1)
return self._lemmatizer
@classmethod
def from_config(cls, cfg):
vit_model = cfg.get("vit_model", "eva_clip_g")
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
llm_model = cfg.get("llm_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
prompt = cfg.get("prompt", "")
max_txt_len = cfg.get("max_txt_len", 128)
max_output_txt_len = cfg.get("max_output_txt_len", 256)
apply_lemmatizer = cfg.get("apply_lemmatizer", False)
qformer_text_input = cfg.get("qformer_text_input", True)
model = cls(
vit_model=vit_model,
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
num_query_token=num_query_token,
llm_model=llm_model,
prompt=prompt,
max_txt_len=max_txt_len,
max_output_txt_len=max_output_txt_len,
apply_lemmatizer=apply_lemmatizer,
qformer_text_input=qformer_text_input,
)
# if qformer_text_input:
# # Hard-coded to load from BLIP-2 stage-1 pre-trained model (not ideal)
# model.load_from_pretrained(
# url_or_filename="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained.pth"
# )
model.load_checkpoint_from_config(cfg)
return model