Spaces:
Runtime error
Runtime error
""" | |
Copyright (c) 2023, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import contextlib | |
import logging | |
import os | |
import time | |
import datetime | |
import torch | |
import torch.nn as nn | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
import bliva.common.dist_utils as dist_utils | |
from bliva.common.dist_utils import download_cached_file | |
from bliva.common.utils import is_url | |
from bliva.common.logger import MetricLogger | |
from bliva.models.base_model import BaseModel | |
from bliva.models.Qformer import BertConfig, BertLMHeadModel | |
from bliva.models.eva_vit import create_eva_vit_g | |
from bliva.models.clip_vit import create_clip_vit_L | |
from transformers import BertTokenizer | |
class Blip2Base(BaseModel): | |
def init_tokenizer(cls, truncation_side="right"): | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side) | |
tokenizer.add_special_tokens({"bos_token": "[DEC]"}) | |
return tokenizer | |
def maybe_autocast(self, dtype=torch.float16): | |
# if on cpu, don't use autocast | |
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16 | |
enable_autocast = self.device != torch.device("cpu") | |
if enable_autocast: | |
return torch.cuda.amp.autocast(dtype=dtype) | |
else: | |
return contextlib.nullcontext() | |
def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): | |
encoder_config = BertConfig.from_pretrained("bert-base-uncased") | |
encoder_config.encoder_width = vision_width | |
# insert cross-attention layer every other block | |
encoder_config.add_cross_attention = True | |
encoder_config.cross_attention_freq = cross_attention_freq | |
encoder_config.query_length = num_query_token | |
Qformer = BertLMHeadModel.from_pretrained( | |
"bert-base-uncased", config=encoder_config | |
) | |
query_tokens = nn.Parameter( | |
torch.zeros(1, num_query_token, encoder_config.hidden_size) | |
) | |
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) #0.02 | |
return Qformer, query_tokens | |
def init_vision_encoder( | |
self, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision | |
): | |
assert model_name in [ | |
"eva_clip_g", | |
"eva2_clip_L", | |
"clip_L", | |
'cpe_eva_clip_g' | |
], "vit model must be eva_clip_g, eva2_clip_L or clip_L or cpe_eva_clip_g" | |
if model_name == "eva_clip_g": | |
visual_encoder = create_eva_vit_g( | |
img_size, drop_path_rate, use_grad_checkpoint, precision | |
) | |
# elif model_name == "eva2_clip_L": | |
# visual_encoder = create_eva2_vit_L( | |
# img_size, drop_path_rate, use_grad_checkpoint, precision | |
# ) | |
elif model_name == "clip_L": | |
visual_encoder = create_clip_vit_L(img_size, use_grad_checkpoint, precision) | |
ln_vision = LayerNorm(visual_encoder.num_features) | |
self.vit_name = model_name | |
return visual_encoder, ln_vision | |
def load_from_pretrained(self, url_or_filename): | |
if is_url(url_or_filename): | |
cached_file = download_cached_file( | |
url_or_filename, check_hash=False, progress=True | |
) | |
checkpoint = torch.load(cached_file, map_location="cpu") | |
elif os.path.isfile(url_or_filename): | |
checkpoint = torch.load(url_or_filename, map_location="cpu") | |
else: | |
raise RuntimeError("checkpoint url or path is invalid") | |
state_dict = checkpoint["model"] | |
msg = self.load_state_dict(state_dict, strict=False) | |
# logging.info("Missing keys {}".format(msg.missing_keys)) | |
logging.info("load checkpoint from %s" % url_or_filename) | |
return msg | |
def get_optimizer_params(self, weight_decay, lr_scale=1): | |
if self.vit_name == "eva_clip_g": | |
vit_num_layers = self.visual_encoder.get_num_layer() | |
lr_scales = list(lr_scale ** (vit_num_layers + 1 - i) for i in range(vit_num_layers + 2)) | |
parameter_group_names = {} | |
parameter_group_vars = {} | |
for name, param in self.named_parameters(): | |
if not param.requires_grad: | |
continue # frozen weights | |
if len(param.shape) == 1 or name.endswith(".bias"): | |
group_name = "no_decay" | |
this_weight_decay = 0. | |
else: | |
group_name = "decay" | |
this_weight_decay = weight_decay | |
if 'visual_encoder' in name: | |
layer_id = self.visual_encoder.get_num_layer(name.replace('visual_encoder.','')) | |
group_name = "vit_layer_%d_%s" % (layer_id, group_name) | |
else: | |
layer_id = None | |
if group_name not in parameter_group_names: | |
if layer_id is not None: | |
scale = lr_scales[layer_id] | |
else: | |
scale = 1 | |
parameter_group_names[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr_scale": scale | |
} | |
parameter_group_vars[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr_scale": scale | |
} | |
parameter_group_vars[group_name]["params"].append(param) | |
parameter_group_names[group_name]["params"].append(name) | |
# import json | |
# print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
optim_params = list(parameter_group_vars.values()) | |
return optim_params | |
else: | |
return super().get_optimizer_params(weight_decay,lr_scale) | |
def _lemmatize(self, answers): | |
def apply(answer): | |
doc = self.lemmatizer(answer) | |
words = [] | |
for token in doc: | |
if token.pos_ in ["NOUN", "VERB"]: | |
words.append(token.lemma_) | |
else: | |
words.append(token.text) | |
answer = " ".join(words) | |
return answer | |
return [apply(answer) for answer in answers] | |
def lemmatizer(self): | |
if self._lemmatizer is None: | |
try: | |
import spacy | |
self._lemmatizer = spacy.load("en_core_web_sm") | |
except ImportError: | |
logging.error( | |
""" | |
Please install spacy and en_core_web_sm model to apply lemmatization. | |
python -m spacy download en_core_web_sm | |
OR | |
import spacy.cli | |
spacy.cli.download("en_core_web_sm") | |
""" | |
) | |
exit(1) | |
return self._lemmatizer | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16.""" | |
def forward(self, x: torch.Tensor): | |
orig_type = x.dtype | |
ret = super().forward(x.type(torch.float32)) | |
return ret.type(orig_type) | |
def compute_sim_matrix(model, data_loader, **kwargs): | |
k_test = kwargs.pop("k_test") | |
metric_logger = MetricLogger(delimiter=" ") | |
header = "Evaluation:" | |
logging.info("Computing features for evaluation...") | |
start_time = time.time() | |
texts = data_loader.dataset.text | |
num_text = len(texts) | |
text_bs = 256 | |
text_ids = [] | |
text_embeds = [] | |
text_atts = [] | |
for i in range(0, num_text, text_bs): | |
text = texts[i : min(num_text, i + text_bs)] | |
text_input = model.tokenizer( | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=35, | |
return_tensors="pt", | |
).to(model.device) | |
text_feat = model.forward_text(text_input) | |
text_embed = F.normalize(model.text_proj(text_feat)) | |
text_embeds.append(text_embed) | |
text_ids.append(text_input.input_ids) | |
text_atts.append(text_input.attention_mask) | |
text_embeds = torch.cat(text_embeds, dim=0) | |
text_ids = torch.cat(text_ids, dim=0) | |
text_atts = torch.cat(text_atts, dim=0) | |
vit_feats = [] | |
image_embeds = [] | |
for samples in data_loader: | |
image = samples["image"] | |
image = image.to(model.device) | |
image_feat, vit_feat = model.forward_image(image) | |
image_embed = model.vision_proj(image_feat) | |
image_embed = F.normalize(image_embed, dim=-1) | |
vit_feats.append(vit_feat.cpu()) | |
image_embeds.append(image_embed) | |
vit_feats = torch.cat(vit_feats, dim=0) | |
image_embeds = torch.cat(image_embeds, dim=0) | |
sims_matrix = [] | |
for image_embed in image_embeds: | |
sim_q2t = image_embed @ text_embeds.t() | |
sim_i2t, _ = sim_q2t.max(0) | |
sims_matrix.append(sim_i2t) | |
sims_matrix = torch.stack(sims_matrix, dim=0) | |
score_matrix_i2t = torch.full( | |
(len(data_loader.dataset.image), len(texts)), -100.0 | |
).to(model.device) | |
num_tasks = dist_utils.get_world_size() | |
rank = dist_utils.get_rank() | |
step = sims_matrix.size(0) // num_tasks + 1 | |
start = rank * step | |
end = min(sims_matrix.size(0), start + step) | |
for i, sims in enumerate( | |
metric_logger.log_every(sims_matrix[start:end], 50, header) | |
): | |
topk_sim, topk_idx = sims.topk(k=k_test, dim=0) | |
image_inputs = vit_feats[start + i].repeat(k_test, 1, 1).to(model.device) | |
score = model.compute_itm( | |
image_inputs=image_inputs, | |
text_ids=text_ids[topk_idx], | |
text_atts=text_atts[topk_idx], | |
).float() | |
score_matrix_i2t[start + i, topk_idx] = score + topk_sim | |
sims_matrix = sims_matrix.t() | |
score_matrix_t2i = torch.full( | |
(len(texts), len(data_loader.dataset.image)), -100.0 | |
).to(model.device) | |
step = sims_matrix.size(0) // num_tasks + 1 | |
start = rank * step | |
end = min(sims_matrix.size(0), start + step) | |
for i, sims in enumerate( | |
metric_logger.log_every(sims_matrix[start:end], 50, header) | |
): | |
topk_sim, topk_idx = sims.topk(k=k_test, dim=0) | |
image_inputs = vit_feats[topk_idx.cpu()].to(model.device) | |
score = model.compute_itm( | |
image_inputs=image_inputs, | |
text_ids=text_ids[start + i].repeat(k_test, 1), | |
text_atts=text_atts[start + i].repeat(k_test, 1), | |
).float() | |
score_matrix_t2i[start + i, topk_idx] = score + topk_sim | |
if dist_utils.is_dist_avail_and_initialized(): | |
dist.barrier() | |
torch.distributed.all_reduce( | |
score_matrix_i2t, op=torch.distributed.ReduceOp.SUM | |
) | |
torch.distributed.all_reduce( | |
score_matrix_t2i, op=torch.distributed.ReduceOp.SUM | |
) | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
logging.info("Evaluation time {}".format(total_time_str)) | |
return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy() | |