BLIVA / app.py
gordonhubackup's picture
upload
e62d81d
raw
history blame
6.2 kB
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
from bliva.common.config import Config
from bliva.common.dist_utils import get_rank
from bliva.common.registry import registry
from bliva.conversation.conversation import Chat, CONV_VISION, CONV_DIRECT
# imports modules for registration
from bliva.models import *
from bliva.processors import *
from bliva.models import load_model_and_preprocess
from evaluate import disable_torch_init
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--model_name",default='bliva_vicuna', type=str, help='model name')
parser.add_argument("--gpu_id", type=int, default=0, help="specify the gpu to load the model.")
args = parser.parse_args()
return args
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
if torch.cuda.is_available():
device='cuda:{}'.format(args.gpu_id)
else:
device=torch.device('cpu')
disable_torch_init()
if args.model_name == "blip2_vicuna_instruct":
model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="vicuna7b", is_eval=True, device=device)
elif args.model_name == "bliva_vicuna":
model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="vicuna7b", is_eval=True, device=device)
elif args.model_name == "bliva_flant5":
model, vis_processors, _ = load_model_and_preprocess(name=args.model_name, model_type="flant5xxl", is_eval=True, device=device)
else:
print("Model not found")
vis_processor = vis_processors["eval"]
# vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
# vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device=device)
print('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
def upload_img(gr_img, text_input, chat_state):
if gr_img is None:
return None, None, gr.update(interactive=True), chat_state, None
chat_state = CONV_DIRECT.copy() #CONV_VISION.copy()
img_list = []
llm_message = chat.upload_img(gr_img, chat_state, img_list)
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=300,
max_length=2000)[0]
chatbot[-1][1] = llm_message[0]
return chatbot, chat_state, img_list
title = """<h1 align="center">Demo of BLIVA</h1>"""
description = """<h3>This is the demo of BLIVA. Upload your images and start chatting!</h3>"""
article = """<p><a href='https://gordonhu608.github.io/bliva/'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/mlpc-ucsd/BLIVA'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://raw.githubusercontent.com/'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p>
"""
#TODO show examples below
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil")
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart πŸ”„")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
interactive=True,
label="beam search numbers)",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='BLIVA')
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
gr.Examples(examples=[
[f"images/example.jpg", "Describe this image in detail."],
[f"images/img3.jpg", "What is this image about?"],
[f"images/img4.jpg", "What is the title of this movie?"],
], inputs=[image, text_input])
upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False)
demo.launch(enable_queue=True)