File size: 15,135 Bytes
e62d81d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import logging
import json
from typing import Dict

from omegaconf import OmegaConf
from bliva.common.registry import registry


class Config:
    def __init__(self, args):
        self.config = {}

        self.args = args

        # Register the config and configuration for setup
        registry.register("configuration", self)

        user_config = self._build_opt_list(self.args.options)

        config = OmegaConf.load(self.args.cfg_path)

        runner_config = self.build_runner_config(config)
        model_config = self.build_model_config(config, **user_config)
        dataset_config = self.build_dataset_config(config)

        # Validate the user-provided runner configuration
        # model and dataset configuration are supposed to be validated by the respective classes
        # [TODO] validate the model/dataset configuration
        # self._validate_runner_config(runner_config)

        # Override the default configuration with user options.
        self.config = OmegaConf.merge(
            runner_config, model_config, dataset_config, user_config
        )

    def _validate_runner_config(self, runner_config):
        """
        This method validates the configuration, such that
            1) all the user specified options are valid;
            2) no type mismatches between the user specified options and the config.
        """
        runner_config_validator = create_runner_config_validator()
        runner_config_validator.validate(runner_config)

    def _build_opt_list(self, opts):
        opts_dot_list = self._convert_to_dot_list(opts)
        return OmegaConf.from_dotlist(opts_dot_list)

    @staticmethod
    def build_model_config(config, **kwargs):
        model = config.get("model", None)
        assert model is not None, "Missing model configuration file."

        model_cls = registry.get_model_class(model.arch)
        assert model_cls is not None, f"Model '{model.arch}' has not been registered."

        model_type = kwargs.get("model.model_type", None)
        if not model_type:
            model_type = model.get("model_type", None)
        # else use the model type selected by user.

        assert model_type is not None, "Missing model_type."

        model_config_path = model_cls.default_config_path(model_type=model_type)

        model_config = OmegaConf.create()
        # hiararchy override, customized config > default config
        model_config = OmegaConf.merge(
            model_config,
            OmegaConf.load(model_config_path),
            {"model": config["model"]},
        )

        return model_config

    @staticmethod
    def build_runner_config(config):
        return {"run": config.run}

    @staticmethod
    def build_dataset_config(config):
        datasets = config.get("datasets", None)
        if datasets is None:
            raise KeyError(
                "Expecting 'datasets' as the root key for dataset configuration."
            )

        dataset_config = OmegaConf.create()

        for dataset_name in datasets:
            print(f"Building dataset config for {dataset_name}")
            builder_cls = registry.get_builder_class(dataset_name)

            dataset_config_type = datasets[dataset_name].get("type", "default")
            dataset_config_path = builder_cls.default_config_path(
                type=dataset_config_type
            )

            # hiararchy override, customized config > default config
            dataset_config = OmegaConf.merge(
                dataset_config,
                OmegaConf.load(dataset_config_path),
                {"datasets": {dataset_name: config["datasets"][dataset_name]}},
            )

        return dataset_config

    def _convert_to_dot_list(self, opts):
        if opts is None:
            opts = []

        if len(opts) == 0:
            return opts

        has_equal = opts[0].find("=") != -1

        if has_equal:
            return opts

        return [(opt + "=" + value) for opt, value in zip(opts[0::2], opts[1::2])]

    def get_config(self):
        return self.config

    @property
    def run_cfg(self):
        return self.config.run

    @property
    def datasets_cfg(self):
        return self.config.datasets

    @property
    def model_cfg(self):
        return self.config.model

    def pretty_print(self):
        logging.info("\n=====  Running Parameters    =====")
        logging.info(self._convert_node_to_json(self.config.run))

        logging.info("\n======  Dataset Attributes  ======")
        datasets = self.config.datasets

        for dataset in datasets:
            if dataset in self.config.datasets:
                logging.info(f"\n======== {dataset} =======")
                dataset_config = self.config.datasets[dataset]
                logging.info(self._convert_node_to_json(dataset_config))
            else:
                logging.warning(f"No dataset named '{dataset}' in config. Skipping")

        logging.info(f"\n======  Model Attributes  ======")
        logging.info(self._convert_node_to_json(self.config.model))

    def _convert_node_to_json(self, node):
        container = OmegaConf.to_container(node, resolve=True)
        return json.dumps(container, indent=4, sort_keys=True)

    def to_dict(self):
        return OmegaConf.to_container(self.config)


def node_to_dict(node):
    return OmegaConf.to_container(node)


class ConfigValidator:
    """
    This is a preliminary implementation to centralize and validate the configuration.
    May be altered in the future.

    A helper class to validate configurations from yaml file.

    This serves the following purposes:
        1. Ensure all the options in the yaml are defined, raise error if not.
        2. when type mismatches are found, the validator will raise an error.
        3. a central place to store and display helpful messages for supported configurations.

    """

    class _Argument:
        def __init__(self, name, choices=None, type=None, help=None):
            self.name = name
            self.val = None
            self.choices = choices
            self.type = type
            self.help = help

        def __str__(self):
            s = f"{self.name}={self.val}"
            if self.type is not None:
                s += f", ({self.type})"
            if self.choices is not None:
                s += f", choices: {self.choices}"
            if self.help is not None:
                s += f", ({self.help})"
            return s

    def __init__(self, description):
        self.description = description

        self.arguments = dict()

        self.parsed_args = None

    def __getitem__(self, key):
        assert self.parsed_args is not None, "No arguments parsed yet."

        return self.parsed_args[key]

    def __str__(self) -> str:
        return self.format_help()

    def add_argument(self, *args, **kwargs):
        """
        Assume the first argument is the name of the argument.
        """
        self.arguments[args[0]] = self._Argument(*args, **kwargs)

    def validate(self, config=None):
        """
        Convert yaml config (dict-like) to list, required by argparse.
        """
        for k, v in config.items():
            assert (
                k in self.arguments
            ), f"""{k} is not a valid argument. Support arguments are {self.format_arguments()}."""

            if self.arguments[k].type is not None:
                try:
                    self.arguments[k].val = self.arguments[k].type(v)
                except ValueError:
                    raise ValueError(f"{k} is not a valid {self.arguments[k].type}.")

            if self.arguments[k].choices is not None:
                assert (
                    v in self.arguments[k].choices
                ), f"""{k} must be one of {self.arguments[k].choices}."""

        return config

    def format_arguments(self):
        return str([f"{k}" for k in sorted(self.arguments.keys())])

    def format_help(self):
        # description + key-value pair string for each argument
        help_msg = str(self.description)
        return help_msg + ", available arguments: " + self.format_arguments()

    def print_help(self):
        # display help message
        print(self.format_help())


def create_runner_config_validator():
    validator = ConfigValidator(description="Runner configurations")

    validator.add_argument(
        "runner",
        type=str,
        choices=["runner_base", "runner_iter"],
        help="""Runner to use. The "runner_base" uses epoch-based training while iter-based
            runner runs based on iters. Default: runner_base""",
    )
    # add argumetns for training dataset ratios
    validator.add_argument(
        "train_dataset_ratios",
        type=Dict[str, float],
        help="""Ratios of training dataset. This is used in iteration-based runner.
        Do not support for epoch-based runner because how to define an epoch becomes tricky.
        Default: None""",
    )
    validator.add_argument(
        "max_iters",
        type=float,
        help="Maximum number of iterations to run.",
    )
    validator.add_argument(
        "max_epoch",
        type=int,
        help="Maximum number of epochs to run.",
    )
    # add arguments for iters_per_inner_epoch
    validator.add_argument(
        "iters_per_inner_epoch",
        type=float,
        help="Number of iterations per inner epoch. This is required when runner is runner_iter.",
    )
    lr_scheds_choices = registry.list_lr_schedulers()
    validator.add_argument(
        "lr_sched",
        type=str,
        choices=lr_scheds_choices,
        help="Learning rate scheduler to use, from {}".format(lr_scheds_choices),
    )
    task_choices = registry.list_tasks()
    validator.add_argument(
        "task",
        type=str,
        choices=task_choices,
        help="Task to use, from {}".format(task_choices),
    )
    # add arguments for init_lr
    validator.add_argument(
        "init_lr",
        type=float,
        help="Initial learning rate. This will be the learning rate after warmup and before decay.",
    )
    # add arguments for min_lr
    validator.add_argument(
        "min_lr",
        type=float,
        help="Minimum learning rate (after decay).",
    )
    # add arguments for warmup_lr
    validator.add_argument(
        "warmup_lr",
        type=float,
        help="Starting learning rate for warmup.",
    )
    # add arguments for learning rate decay rate
    validator.add_argument(
        "lr_decay_rate",
        type=float,
        help="Learning rate decay rate. Required if using a decaying learning rate scheduler.",
    )
    # add arguments for weight decay
    validator.add_argument(
        "weight_decay",
        type=float,
        help="Weight decay rate.",
    )
    # add arguments for training batch size
    validator.add_argument(
        "batch_size_train",
        type=int,
        help="Training batch size.",
    )
    # add arguments for evaluation batch size
    validator.add_argument(
        "batch_size_eval",
        type=int,
        help="Evaluation batch size, including validation and testing.",
    )
    # add arguments for number of workers for data loading
    validator.add_argument(
        "num_workers",
        help="Number of workers for data loading.",
    )
    # add arguments for warm up steps
    validator.add_argument(
        "warmup_steps",
        type=int,
        help="Number of warmup steps. Required if a warmup schedule is used.",
    )
    # add arguments for random seed
    validator.add_argument(
        "seed",
        type=int,
        help="Random seed.",
    )
    # add arguments for output directory
    validator.add_argument(
        "output_dir",
        type=str,
        help="Output directory to save checkpoints and logs.",
    )
    # add arguments for whether only use evaluation
    validator.add_argument(
        "evaluate",
        help="Whether to only evaluate the model. If true, training will not be performed.",
    )
    # add arguments for splits used for training, e.g. ["train", "val"]
    validator.add_argument(
        "train_splits",
        type=list,
        help="Splits to use for training.",
    )
    # add arguments for splits used for validation, e.g. ["val"]
    validator.add_argument(
        "valid_splits",
        type=list,
        help="Splits to use for validation. If not provided, will skip the validation.",
    )
    # add arguments for splits used for testing, e.g. ["test"]
    validator.add_argument(
        "test_splits",
        type=list,
        help="Splits to use for testing. If not provided, will skip the testing.",
    )
    # add arguments for accumulating gradient for iterations
    validator.add_argument(
        "accum_grad_iters",
        type=int,
        help="Number of iterations to accumulate gradient for.",
    )

    # ====== distributed training ======
    validator.add_argument(
        "device",
        type=str,
        choices=["cpu", "cuda"],
        help="Device to use. Support 'cuda' or 'cpu' as for now.",
    )
    validator.add_argument(
        "world_size",
        type=int,
        help="Number of processes participating in the job.",
    )
    validator.add_argument("dist_url", type=str)
    validator.add_argument("distributed", type=bool)
    # add arguments to opt using distributed sampler during evaluation or not
    validator.add_argument(
        "use_dist_eval_sampler",
        type=bool,
        help="Whether to use distributed sampler during evaluation or not.",
    )

    # ====== task specific ======
    # generation task specific arguments
    # add arguments for maximal length of text output
    validator.add_argument(
        "max_len",
        type=int,
        help="Maximal length of text output.",
    )
    # add arguments for minimal length of text output
    validator.add_argument(
        "min_len",
        type=int,
        help="Minimal length of text output.",
    )
    # add arguments number of beams
    validator.add_argument(
        "num_beams",
        type=int,
        help="Number of beams used for beam search.",
    )

    # vqa task specific arguments
    # add arguments for number of answer candidates
    validator.add_argument(
        "num_ans_candidates",
        type=int,
        help="""For ALBEF and BLIP, these models first rank answers according to likelihood to select answer candidates.""",
    )
    # add arguments for inference method
    validator.add_argument(
        "inference_method",
        type=str,
        choices=["genearte", "rank"],
        help="""Inference method to use for question answering. If rank, requires a answer list.""",
    )

    # ====== model specific ======
    validator.add_argument(
        "k_test",
        type=int,
        help="Number of top k most similar samples from ITC/VTC selection to be tested.",
    )

    return validator