Spaces:
Sleeping
Sleeping
from typing import List | |
import torch | |
import numpy as np | |
import cv2 | |
import random | |
from pytorch_grad_cam.base_cam import BaseCAM | |
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection | |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
# Bounding box predicted on image | |
def draw_predictions(image: np.ndarray, boxes: List[List], class_labels: List[str]) -> np.ndarray: | |
colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels] | |
im = np.array(image) | |
height, width, _ = im.shape | |
bbox_thick = int(0.6 * (height + width) / 600) | |
# Create a Rectangle patch | |
for box in boxes: | |
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height" | |
class_pred = box[0] | |
conf = box[1] | |
box = box[2:] | |
upper_left_x = box[0] - box[2] / 2 | |
upper_left_y = box[1] - box[3] / 2 | |
x1 = int(upper_left_x * width) | |
y1 = int(upper_left_y * height) | |
x2 = x1 + int(box[2] * width) | |
y2 = y1 + int(box[3] * height) | |
cv2.rectangle( | |
image, | |
(x1, y1), (x2, y2), | |
color=colors[int(class_pred)], | |
thickness=bbox_thick | |
) | |
text = f"{class_labels[int(class_pred)]}: {conf:.2f}" | |
t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0] | |
c3 = (x1 + t_size[0], y1 - t_size[1] - 3) | |
cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1) | |
cv2.putText( | |
image, | |
text, | |
(x1, y1 - 2), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
0.7, | |
(0, 0, 0), | |
bbox_thick // 2, | |
lineType=cv2.LINE_AA, | |
) | |
return image | |
# GradCAM outputs | |
class YoloCAM(BaseCAM): | |
def __init__(self, model, target_layers, use_cuda=False, | |
reshape_transform=None): | |
super(YoloCAM, self).__init__(model, | |
target_layers, | |
use_cuda, | |
reshape_transform, | |
uses_gradients=False) | |
def forward(self, | |
input_tensor: torch.Tensor, | |
scaled_anchors: torch.Tensor, | |
targets: List[torch.nn.Module], | |
eigen_smooth: bool = False) -> np.ndarray: | |
if self.cuda: | |
input_tensor = input_tensor.cuda() | |
if self.compute_input_gradient: | |
input_tensor = torch.autograd.Variable(input_tensor, | |
requires_grad=True) | |
outputs = self.activations_and_grads(input_tensor) | |
if targets is None: | |
bboxes = [[] for _ in range(1)] | |
for i in range(3): | |
batch_size, A, S, _, _ = outputs[i].shape | |
anchor = scaled_anchors[i] | |
boxes_scale_i = cells_to_bboxes( | |
outputs[i], anchor, S=S, is_preds=True | |
) | |
for idx, (box) in enumerate(boxes_scale_i): | |
bboxes[idx] += box | |
nms_boxes = non_max_suppression( | |
bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint", | |
) | |
# target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1) | |
target_categories = [box[0] for box in nms_boxes] | |
targets = [ClassifierOutputTarget( | |
category) for category in target_categories] | |
if self.uses_gradients: | |
self.model.zero_grad() | |
loss = sum([target(output) | |
for target, output in zip(targets, outputs)]) | |
loss.backward(retain_graph=True) | |
# In most of the saliency attribution papers, the saliency is | |
# computed with a single target layer. | |
# Commonly it is the last convolutional layer. | |
# Here we support passing a list with multiple target layers. | |
# It will compute the saliency image for every image, | |
# and then aggregate them (with a default mean aggregation). | |
# This gives you more flexibility in case you just want to | |
# use all conv layers for example, all Batchnorm layers, | |
# or something else. | |
cam_per_layer = self.compute_cam_per_layer(input_tensor, | |
targets, | |
eigen_smooth) | |
return self.aggregate_multi_layers(cam_per_layer) | |
def get_cam_image(self, | |
input_tensor, | |
target_layer, | |
target_category, | |
activations, | |
grads, | |
eigen_smooth): | |
return get_2d_projection(activations) | |