|
import os |
|
import argparse |
|
import io |
|
from typing import List |
|
|
|
import pypdfium2 |
|
import streamlit as st |
|
from surya.detection import batch_text_detection |
|
from surya.layout import batch_layout_detection |
|
from surya.model.detection.segformer import load_model, load_processor |
|
from surya.model.recognition.model import load_model as load_rec_model |
|
from surya.model.recognition.processor import load_processor as load_rec_processor |
|
from surya.model.ordering.processor import load_processor as load_order_processor |
|
from surya.model.ordering.model import load_model as load_order_model |
|
from surya.ordering import batch_ordering |
|
from surya.postprocessing.heatmap import draw_polys_on_image |
|
from surya.ocr import run_ocr |
|
from surya.postprocessing.text import draw_text_on_image |
|
from PIL import Image |
|
from surya.languages import CODE_TO_LANGUAGE |
|
from surya.input.langs import replace_lang_with_code |
|
from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult |
|
from surya.settings import settings |
|
|
|
parser = argparse.ArgumentParser(description="Run OCR on an image or PDF.") |
|
parser.add_argument("--math", action="store_true", help="Use math model for detection", default=False) |
|
|
|
try: |
|
args = parser.parse_args() |
|
except SystemExit as e: |
|
print(f"Error parsing arguments: {e}") |
|
os._exit(e.code) |
|
|
|
@st.cache_resource() |
|
def load_det_cached(): |
|
checkpoint = settings.DETECTOR_MATH_MODEL_CHECKPOINT if args.math else settings.DETECTOR_MODEL_CHECKPOINT |
|
return load_model(checkpoint=checkpoint), load_processor(checkpoint=checkpoint) |
|
|
|
|
|
@st.cache_resource() |
|
def load_rec_cached(): |
|
return load_rec_model(), load_rec_processor() |
|
|
|
|
|
@st.cache_resource() |
|
def load_layout_cached(): |
|
return load_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT), load_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) |
|
|
|
@st.cache_resource() |
|
def load_order_cached(): |
|
return load_order_model(), load_order_processor() |
|
|
|
|
|
def text_detection(img) -> (Image.Image, TextDetectionResult): |
|
pred = batch_text_detection([img], det_model, det_processor)[0] |
|
polygons = [p.polygon for p in pred.bboxes] |
|
det_img = draw_polys_on_image(polygons, img.copy()) |
|
return det_img, pred |
|
|
|
|
|
def layout_detection(img) -> (Image.Image, LayoutResult): |
|
_, det_pred = text_detection(img) |
|
pred = batch_layout_detection([img], layout_model, layout_processor, [det_pred])[0] |
|
polygons = [p.polygon for p in pred.bboxes] |
|
labels = [p.label for p in pred.bboxes] |
|
layout_img = draw_polys_on_image(polygons, img.copy(), labels=labels) |
|
return layout_img, pred |
|
|
|
|
|
def order_detection(img) -> (Image.Image, OrderResult): |
|
_, layout_pred = layout_detection(img) |
|
bboxes = [l.bbox for l in layout_pred.bboxes] |
|
pred = batch_ordering([img], [bboxes], order_model, order_processor)[0] |
|
polys = [l.polygon for l in pred.bboxes] |
|
positions = [str(l.position) for l in pred.bboxes] |
|
order_img = draw_polys_on_image(polys, img.copy(), labels=positions, label_font_size=20) |
|
return order_img, pred |
|
|
|
|
|
|
|
def ocr(img, langs: List[str]) -> (Image.Image, OCRResult): |
|
replace_lang_with_code(langs) |
|
img_pred = run_ocr([img], [langs], det_model, det_processor, rec_model, rec_processor)[0] |
|
|
|
bboxes = [l.bbox for l in img_pred.text_lines] |
|
text = [l.text for l in img_pred.text_lines] |
|
rec_img = draw_text_on_image(bboxes, text, img.size, langs, has_math="_math" in langs) |
|
return rec_img, img_pred |
|
|
|
|
|
def open_pdf(pdf_file): |
|
stream = io.BytesIO(pdf_file.getvalue()) |
|
return pypdfium2.PdfDocument(stream) |
|
|
|
|
|
@st.cache_data() |
|
def get_page_image(pdf_file, page_num, dpi=96): |
|
doc = open_pdf(pdf_file) |
|
renderer = doc.render( |
|
pypdfium2.PdfBitmap.to_pil, |
|
page_indices=[page_num - 1], |
|
scale=dpi / 72, |
|
) |
|
png = list(renderer)[0] |
|
png_image = png.convert("RGB") |
|
return png_image |
|
|
|
|
|
@st.cache_data() |
|
def page_count(pdf_file): |
|
doc = open_pdf(pdf_file) |
|
return len(doc) |
|
|
|
|
|
st.set_page_config(layout="wide") |
|
col1, col2 = st.columns([.5, .5]) |
|
|
|
det_model, det_processor = load_det_cached() |
|
rec_model, rec_processor = load_rec_cached() |
|
layout_model, layout_processor = load_layout_cached() |
|
order_model, order_processor = load_order_cached() |
|
|
|
|
|
st.markdown(""" |
|
# Surya OCR Demo |
|
|
|
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages. |
|
|
|
Notes: |
|
- This works best on documents with printed text. |
|
- Preprocessing the image (e.g. increasing contrast) can improve results. |
|
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease). |
|
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list. |
|
|
|
Find the project [here](https://github.com/VikParuchuri/surya). |
|
""") |
|
|
|
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"]) |
|
languages = st.sidebar.multiselect("Languages", sorted(list(CODE_TO_LANGUAGE.values())), default=["English"], max_selections=4) |
|
|
|
if in_file is None: |
|
st.stop() |
|
|
|
filetype = in_file.type |
|
whole_image = False |
|
if "pdf" in filetype: |
|
page_count = page_count(in_file) |
|
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count) |
|
|
|
pil_image = get_page_image(in_file, page_number) |
|
else: |
|
pil_image = Image.open(in_file).convert("RGB") |
|
|
|
text_det = st.sidebar.button("Run Text Detection") |
|
text_rec = st.sidebar.button("Run OCR") |
|
layout_det = st.sidebar.button("Run Layout Analysis") |
|
order_det = st.sidebar.button("Run Reading Order") |
|
|
|
if pil_image is None: |
|
st.stop() |
|
|
|
|
|
if text_det: |
|
det_img, pred = text_detection(pil_image) |
|
with col1: |
|
st.image(det_img, caption="Detected Text", use_column_width=True) |
|
st.json(pred.model_dump(exclude=["heatmap", "affinity_map"]), expanded=True) |
|
|
|
|
|
|
|
if layout_det: |
|
layout_img, pred = layout_detection(pil_image) |
|
with col1: |
|
st.image(layout_img, caption="Detected Layout", use_column_width=True) |
|
st.json(pred.model_dump(exclude=["segmentation_map"]), expanded=True) |
|
|
|
|
|
if text_rec: |
|
rec_img, pred = ocr(pil_image, languages) |
|
with col1: |
|
st.image(rec_img, caption="OCR Result", use_column_width=True) |
|
json_tab, text_tab = st.tabs(["JSON", "Text Lines (for debugging)"]) |
|
with json_tab: |
|
st.json(pred.model_dump(), expanded=True) |
|
with text_tab: |
|
st.text("\n".join([p.text for p in pred.text_lines])) |
|
|
|
if order_det: |
|
order_img, pred = order_detection(pil_image) |
|
with col1: |
|
st.image(order_img, caption="Reading Order", use_column_width=True) |
|
st.json(pred.model_dump(), expanded=True) |
|
|
|
with col2: |
|
st.image(pil_image, caption="Uploaded Image", use_column_width=True) |