surya / app.py
mizoru's picture
Upload app.py
cbb4b5a verified
import os
import argparse
import io
from typing import List
import pypdfium2
import streamlit as st
from surya.detection import batch_text_detection
from surya.layout import batch_layout_detection
from surya.model.detection.segformer import load_model, load_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from surya.model.ordering.processor import load_processor as load_order_processor
from surya.model.ordering.model import load_model as load_order_model
from surya.ordering import batch_ordering
from surya.postprocessing.heatmap import draw_polys_on_image
from surya.ocr import run_ocr
from surya.postprocessing.text import draw_text_on_image
from PIL import Image
from surya.languages import CODE_TO_LANGUAGE
from surya.input.langs import replace_lang_with_code
from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult
from surya.settings import settings
parser = argparse.ArgumentParser(description="Run OCR on an image or PDF.")
parser.add_argument("--math", action="store_true", help="Use math model for detection", default=False)
try:
args = parser.parse_args()
except SystemExit as e:
print(f"Error parsing arguments: {e}")
os._exit(e.code)
@st.cache_resource()
def load_det_cached():
checkpoint = settings.DETECTOR_MATH_MODEL_CHECKPOINT if args.math else settings.DETECTOR_MODEL_CHECKPOINT
return load_model(checkpoint=checkpoint), load_processor(checkpoint=checkpoint)
@st.cache_resource()
def load_rec_cached():
return load_rec_model(), load_rec_processor()
@st.cache_resource()
def load_layout_cached():
return load_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT), load_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT)
@st.cache_resource()
def load_order_cached():
return load_order_model(), load_order_processor()
def text_detection(img) -> (Image.Image, TextDetectionResult):
pred = batch_text_detection([img], det_model, det_processor)[0]
polygons = [p.polygon for p in pred.bboxes]
det_img = draw_polys_on_image(polygons, img.copy())
return det_img, pred
def layout_detection(img) -> (Image.Image, LayoutResult):
_, det_pred = text_detection(img)
pred = batch_layout_detection([img], layout_model, layout_processor, [det_pred])[0]
polygons = [p.polygon for p in pred.bboxes]
labels = [p.label for p in pred.bboxes]
layout_img = draw_polys_on_image(polygons, img.copy(), labels=labels)
return layout_img, pred
def order_detection(img) -> (Image.Image, OrderResult):
_, layout_pred = layout_detection(img)
bboxes = [l.bbox for l in layout_pred.bboxes]
pred = batch_ordering([img], [bboxes], order_model, order_processor)[0]
polys = [l.polygon for l in pred.bboxes]
positions = [str(l.position) for l in pred.bboxes]
order_img = draw_polys_on_image(polys, img.copy(), labels=positions, label_font_size=20)
return order_img, pred
# Function for OCR
def ocr(img, langs: List[str]) -> (Image.Image, OCRResult):
replace_lang_with_code(langs)
img_pred = run_ocr([img], [langs], det_model, det_processor, rec_model, rec_processor)[0]
bboxes = [l.bbox for l in img_pred.text_lines]
text = [l.text for l in img_pred.text_lines]
rec_img = draw_text_on_image(bboxes, text, img.size, langs, has_math="_math" in langs)
return rec_img, img_pred
def open_pdf(pdf_file):
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)
@st.cache_data()
def get_page_image(pdf_file, page_num, dpi=96):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
return png_image
@st.cache_data()
def page_count(pdf_file):
doc = open_pdf(pdf_file)
return len(doc)
st.set_page_config(layout="wide")
col1, col2 = st.columns([.5, .5])
det_model, det_processor = load_det_cached()
rec_model, rec_processor = load_rec_cached()
layout_model, layout_processor = load_layout_cached()
order_model, order_processor = load_order_cached()
st.markdown("""
# Surya OCR Demo
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages.
Notes:
- This works best on documents with printed text.
- Preprocessing the image (e.g. increasing contrast) can improve results.
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease).
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list.
Find the project [here](https://github.com/VikParuchuri/surya).
""")
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
languages = st.sidebar.multiselect("Languages", sorted(list(CODE_TO_LANGUAGE.values())), default=["English"], max_selections=4)
if in_file is None:
st.stop()
filetype = in_file.type
whole_image = False
if "pdf" in filetype:
page_count = page_count(in_file)
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count)
pil_image = get_page_image(in_file, page_number)
else:
pil_image = Image.open(in_file).convert("RGB")
text_det = st.sidebar.button("Run Text Detection")
text_rec = st.sidebar.button("Run OCR")
layout_det = st.sidebar.button("Run Layout Analysis")
order_det = st.sidebar.button("Run Reading Order")
if pil_image is None:
st.stop()
# Run Text Detection
if text_det:
det_img, pred = text_detection(pil_image)
with col1:
st.image(det_img, caption="Detected Text", use_column_width=True)
st.json(pred.model_dump(exclude=["heatmap", "affinity_map"]), expanded=True)
# Run layout
if layout_det:
layout_img, pred = layout_detection(pil_image)
with col1:
st.image(layout_img, caption="Detected Layout", use_column_width=True)
st.json(pred.model_dump(exclude=["segmentation_map"]), expanded=True)
# Run OCR
if text_rec:
rec_img, pred = ocr(pil_image, languages)
with col1:
st.image(rec_img, caption="OCR Result", use_column_width=True)
json_tab, text_tab = st.tabs(["JSON", "Text Lines (for debugging)"])
with json_tab:
st.json(pred.model_dump(), expanded=True)
with text_tab:
st.text("\n".join([p.text for p in pred.text_lines]))
if order_det:
order_img, pred = order_detection(pil_image)
with col1:
st.image(order_img, caption="Reading Order", use_column_width=True)
st.json(pred.model_dump(), expanded=True)
with col2:
st.image(pil_image, caption="Uploaded Image", use_column_width=True)