Spaces:
Running
Running
import json | |
import re | |
from pathlib import Path | |
import yaml | |
from modules import chat, loaders, metadata_gguf, shared, ui | |
def get_fallback_settings(): | |
return { | |
'bf16': False, | |
'use_eager_attention': False, | |
'wbits': 'None', | |
'groupsize': 'None', | |
'desc_act': False, | |
'max_seq_len': 2048, | |
'n_ctx': 2048, | |
'rope_freq_base': 0, | |
'compress_pos_emb': 1, | |
'alpha_value': 1, | |
'truncation_length': shared.settings['truncation_length'], | |
'skip_special_tokens': shared.settings['skip_special_tokens'], | |
'custom_stopping_strings': shared.settings['custom_stopping_strings'], | |
} | |
def get_model_metadata(model): | |
model_settings = {} | |
# Get settings from models/config.yaml and models/config-user.yaml | |
settings = shared.model_config | |
for pat in settings: | |
if re.match(pat.lower(), model.lower()): | |
for k in settings[pat]: | |
model_settings[k] = settings[pat][k] | |
path = Path(f'{shared.args.model_dir}/{model}/config.json') | |
if path.exists(): | |
hf_metadata = json.loads(open(path, 'r', encoding='utf-8').read()) | |
else: | |
hf_metadata = None | |
if 'loader' not in model_settings: | |
model_settings['loader'] = infer_loader(model, model_settings) | |
# GGUF metadata | |
if model_settings['loader'] in ['llama.cpp', 'llamacpp_HF']: | |
path = Path(f'{shared.args.model_dir}/{model}') | |
if path.is_file(): | |
model_file = path | |
else: | |
model_file = list(path.glob('*.gguf'))[0] | |
metadata = metadata_gguf.load_metadata(model_file) | |
for k in metadata: | |
if k.endswith('context_length'): | |
model_settings['n_ctx'] = metadata[k] | |
elif k.endswith('rope.freq_base'): | |
model_settings['rope_freq_base'] = metadata[k] | |
elif k.endswith('rope.scale_linear'): | |
model_settings['compress_pos_emb'] = metadata[k] | |
elif k.endswith('rope.scaling.factor'): | |
model_settings['compress_pos_emb'] = metadata[k] | |
elif k.endswith('block_count'): | |
model_settings['n_gpu_layers'] = metadata[k] + 1 | |
if 'tokenizer.chat_template' in metadata: | |
template = metadata['tokenizer.chat_template'] | |
eos_token = metadata['tokenizer.ggml.tokens'][metadata['tokenizer.ggml.eos_token_id']] | |
if 'tokenizer.ggml.bos_token_id' in metadata: | |
bos_token = metadata['tokenizer.ggml.tokens'][metadata['tokenizer.ggml.bos_token_id']] | |
else: | |
bos_token = "" | |
template = template.replace('eos_token', "'{}'".format(eos_token)) | |
template = template.replace('bos_token', "'{}'".format(bos_token)) | |
template = re.sub(r'raise_exception\([^)]*\)', "''", template) | |
template = re.sub(r'{% if add_generation_prompt %}.*', '', template, flags=re.DOTALL) | |
model_settings['instruction_template'] = 'Custom (obtained from model metadata)' | |
model_settings['instruction_template_str'] = template | |
else: | |
# Transformers metadata | |
if hf_metadata is not None: | |
metadata = json.loads(open(path, 'r', encoding='utf-8').read()) | |
if 'pretrained_config' in metadata: | |
metadata = metadata['pretrained_config'] | |
for k in ['max_position_embeddings', 'model_max_length', 'max_seq_len']: | |
if k in metadata: | |
model_settings['truncation_length'] = metadata[k] | |
model_settings['max_seq_len'] = metadata[k] | |
if 'rope_theta' in metadata: | |
model_settings['rope_freq_base'] = metadata['rope_theta'] | |
elif 'attn_config' in metadata and 'rope_theta' in metadata['attn_config']: | |
model_settings['rope_freq_base'] = metadata['attn_config']['rope_theta'] | |
if 'rope_scaling' in metadata and isinstance(metadata['rope_scaling'], dict) and all(key in metadata['rope_scaling'] for key in ('type', 'factor')): | |
if metadata['rope_scaling']['type'] == 'linear': | |
model_settings['compress_pos_emb'] = metadata['rope_scaling']['factor'] | |
# For Gemma-2 | |
if 'torch_dtype' in metadata and metadata['torch_dtype'] == 'bfloat16': | |
model_settings['bf16'] = True | |
# For Gemma-2 | |
if 'architectures' in metadata and isinstance(metadata['architectures'], list) and 'Gemma2ForCausalLM' in metadata['architectures']: | |
model_settings['use_eager_attention'] = True | |
# Read GPTQ metadata for old GPTQ loaders | |
if 'quantization_config' in metadata and metadata['quantization_config'].get('quant_method', '') != 'exl2': | |
if 'bits' in metadata['quantization_config']: | |
model_settings['wbits'] = metadata['quantization_config']['bits'] | |
if 'group_size' in metadata['quantization_config']: | |
model_settings['groupsize'] = metadata['quantization_config']['group_size'] | |
if 'desc_act' in metadata['quantization_config']: | |
model_settings['desc_act'] = metadata['quantization_config']['desc_act'] | |
# Read AutoGPTQ metadata | |
path = Path(f'{shared.args.model_dir}/{model}/quantize_config.json') | |
if path.exists(): | |
metadata = json.loads(open(path, 'r', encoding='utf-8').read()) | |
if 'bits' in metadata: | |
model_settings['wbits'] = metadata['bits'] | |
if 'group_size' in metadata: | |
model_settings['groupsize'] = metadata['group_size'] | |
if 'desc_act' in metadata: | |
model_settings['desc_act'] = metadata['desc_act'] | |
# Try to find the Jinja instruct template | |
path = Path(f'{shared.args.model_dir}/{model}') / 'tokenizer_config.json' | |
if path.exists(): | |
metadata = json.loads(open(path, 'r', encoding='utf-8').read()) | |
if 'chat_template' in metadata: | |
template = metadata['chat_template'] | |
if isinstance(template, list): | |
template = template[0]['template'] | |
for k in ['eos_token', 'bos_token']: | |
if k in metadata: | |
value = metadata[k] | |
if isinstance(value, dict): | |
value = value['content'] | |
template = template.replace(k, "'{}'".format(value)) | |
template = re.sub(r'raise_exception\([^)]*\)', "''", template) | |
template = re.sub(r'{% if add_generation_prompt %}.*', '', template, flags=re.DOTALL) | |
model_settings['instruction_template'] = 'Custom (obtained from model metadata)' | |
model_settings['instruction_template_str'] = template | |
if 'instruction_template' not in model_settings: | |
model_settings['instruction_template'] = 'Alpaca' | |
# Ignore rope_freq_base if set to the default value | |
if 'rope_freq_base' in model_settings and model_settings['rope_freq_base'] == 10000: | |
model_settings.pop('rope_freq_base') | |
# Apply user settings from models/config-user.yaml | |
settings = shared.user_config | |
for pat in settings: | |
if re.match(pat.lower(), model.lower()): | |
for k in settings[pat]: | |
model_settings[k] = settings[pat][k] | |
# Load instruction template if defined by name rather than by value | |
if model_settings['instruction_template'] != 'Custom (obtained from model metadata)': | |
model_settings['instruction_template_str'] = chat.load_instruction_template(model_settings['instruction_template']) | |
return model_settings | |
def infer_loader(model_name, model_settings): | |
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') | |
if not path_to_model.exists(): | |
loader = None | |
elif (path_to_model / 'quantize_config.json').exists() or ('wbits' in model_settings and isinstance(model_settings['wbits'], int) and model_settings['wbits'] > 0): | |
loader = 'ExLlamav2_HF' | |
elif len(list(path_to_model.glob('*.gguf'))) > 0 and path_to_model.is_dir() and (path_to_model / 'tokenizer_config.json').exists(): | |
loader = 'llamacpp_HF' | |
elif len(list(path_to_model.glob('*.gguf'))) > 0: | |
loader = 'llama.cpp' | |
elif re.match(r'.*\.gguf', model_name.lower()): | |
loader = 'llama.cpp' | |
elif re.match(r'.*exl2', model_name.lower()): | |
loader = 'ExLlamav2_HF' | |
elif re.match(r'.*-hqq', model_name.lower()): | |
return 'HQQ' | |
else: | |
loader = 'Transformers' | |
return loader | |
def update_model_parameters(state, initial=False): | |
''' | |
UI: update the command-line arguments based on the interface values | |
''' | |
elements = ui.list_model_elements() # the names of the parameters | |
gpu_memories = [] | |
for i, element in enumerate(elements): | |
if element not in state: | |
continue | |
value = state[element] | |
if element.startswith('gpu_memory'): | |
gpu_memories.append(value) | |
continue | |
if initial and element in shared.provided_arguments: | |
continue | |
# Setting null defaults | |
if element in ['wbits', 'groupsize'] and value == 'None': | |
value = vars(shared.args_defaults)[element] | |
elif element in ['cpu_memory'] and value == 0: | |
value = vars(shared.args_defaults)[element] | |
# Making some simple conversions | |
if element in ['wbits', 'groupsize']: | |
value = int(value) | |
elif element == 'cpu_memory' and value is not None: | |
value = f"{value}MiB" | |
setattr(shared.args, element, value) | |
found_positive = False | |
for i in gpu_memories: | |
if i > 0: | |
found_positive = True | |
break | |
if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']): | |
if found_positive: | |
shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories] | |
else: | |
shared.args.gpu_memory = None | |
def apply_model_settings_to_state(model, state): | |
''' | |
UI: update the state variable with the model settings | |
''' | |
model_settings = get_model_metadata(model) | |
if 'loader' in model_settings: | |
loader = model_settings.pop('loader') | |
# If the user is using an alternative loader for the same model type, let them keep using it | |
if not (loader == 'ExLlamav2_HF' and state['loader'] in ['ExLlamav2', 'AutoGPTQ']): | |
state['loader'] = loader | |
for k in model_settings: | |
if k in state: | |
if k in ['wbits', 'groupsize']: | |
state[k] = str(model_settings[k]) | |
else: | |
state[k] = model_settings[k] | |
return state | |
def save_model_settings(model, state): | |
''' | |
Save the settings for this model to models/config-user.yaml | |
''' | |
if model == 'None': | |
yield ("Not saving the settings because no model is selected in the menu.") | |
return | |
user_config = shared.load_user_config() | |
model_regex = model + '$' # For exact matches | |
if model_regex not in user_config: | |
user_config[model_regex] = {} | |
for k in ui.list_model_elements(): | |
if k == 'loader' or k in loaders.loaders_and_params[state['loader']]: | |
user_config[model_regex][k] = state[k] | |
shared.user_config = user_config | |
output = yaml.dump(user_config, sort_keys=False) | |
p = Path(f'{shared.args.model_dir}/config-user.yaml') | |
with open(p, 'w') as f: | |
f.write(output) | |
yield (f"Settings for `{model}` saved to `{p}`.") | |
def save_instruction_template(model, template): | |
''' | |
Similar to the function above, but it saves only the instruction template. | |
''' | |
if model == 'None': | |
yield ("Not saving the template because no model is selected in the menu.") | |
return | |
user_config = shared.load_user_config() | |
model_regex = model + '$' # For exact matches | |
if model_regex not in user_config: | |
user_config[model_regex] = {} | |
if template == 'None': | |
user_config[model_regex].pop('instruction_template', None) | |
else: | |
user_config[model_regex]['instruction_template'] = template | |
shared.user_config = user_config | |
output = yaml.dump(user_config, sort_keys=False) | |
p = Path(f'{shared.args.model_dir}/config-user.yaml') | |
with open(p, 'w') as f: | |
f.write(output) | |
if template == 'None': | |
yield (f"Instruction template for `{model}` unset in `{p}`, as the value for template was `{template}`.") | |
else: | |
yield (f"Instruction template for `{model}` saved to `{p}` as `{template}`.") | |