import gradio as gr from transformers import pipeline # Set up the pipeline med_pipe = pipeline("text-generation", model="OpenBioLLM-70B", trust_remote_code=True) # Define the function for generating responses def generate_response(input_text): if not input_text.strip(): return "Please enter some text to generate a response." response = pipe(input_text, max_new_tokens=150, do_sample=True)[0]["generated_text"] return response # Gradio interface iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="Flmc/DISC-MedLLM") if __name__ == "__main__": iface.launch()