import gradio as gr from openai import OpenAI import os import json from datetime import datetime from zoneinfo import ZoneInfo import uuid from pathlib import Path from huggingface_hub import CommitScheduler openai_api_key = os.getenv('api_key') model_name = "gpt-4o-mini" client = OpenAI( api_key=openai_api_key, ) # Define the file where to save the data. Use UUID to make sure not to overwrite existing data from a previous run. feedback_file = Path("user_feedback/") / f"data_{uuid.uuid4()}.json" feedback_folder = feedback_file.parent # Schedule regular uploads. Remote repo and local folder are created if they don't already exist. scheduler = CommitScheduler( repo_id="misdelivery/demo-test-data", # Replace with your actual repo ID repo_type="dataset", folder_path=feedback_folder, path_in_repo="data", every=1, # Upload every 1 minutes ) def save_or_update_conversation(conversation_id, message, response, message_index, liked=None): """ Save or update conversation data in a JSON Lines file. If the entry already exists (same id and message_index), update the 'label' field. Otherwise, append a new entry. """ with scheduler.lock: # Read existing data data = [] if feedback_file.exists(): with feedback_file.open("r") as f: data = [json.loads(line) for line in f if line.strip()] # Find if an entry with the same id and message_index exists entry_index = next((i for i, entry in enumerate(data) if entry['id'] == conversation_id and entry['message_index'] == message_index), None) if entry_index is not None: # Update existing entry data[entry_index]['label'] = liked else: # Append new entry data.append({ "id": conversation_id, "timestamp": datetime.now(ZoneInfo("Asia/Tokyo")).isoformat(), "prompt": message, "completion": response, "message_index": message_index, "label": liked }) # Write updated data back to file with feedback_file.open("w") as f: for entry in data: f.write(json.dumps(entry) + "\n") def respond(message, history, conversation_id, max_tokens, temperature, top_p): messages = [ {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"} ] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for chunk in client.chat.completions.create( model=model_name, messages=messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if chunk.choices[0].delta.content is not None: response += chunk.choices[0].delta.content yield response # Save conversation after the full response is generated message_index = len(history) save_or_update_conversation(conversation_id, message, response, message_index) def vote(data: gr.LikeData, history, conversation_id): """ Update user feedback (like/dislike) in the local file. """ message_index = data.index[0] liked = data.liked save_or_update_conversation(conversation_id, None, None, message_index, liked) def create_conversation_id(): return str(uuid.uuid4()) description = """ ### gpt400-miniとの会話(期間限定での公開) - 人工知能開発のため、原則として**このChatBotの入出力データは全て著作権フリー(CC0)で公開する**ため、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。 - 公開中のデータセット https://huggingface.co./datasets/misdelivery/demo-test-data  - **上記の条件に同意する場合のみ**、以下のChatbotを利用してください。 """ HEADER = description FOOTER = """### 注意 - コンテクスト長が4096までなので、あまり会話が長くなると、エラーで停止します。ページを再読み込みしてください。 - GPUサーバーが不安定なので、応答しないことがあるかもしれません。 - この会話データはHugging Face Hubのデータセットに定期的にアップロードされます。""" def run(): conversation_id = gr.State(create_conversation_id) chatbot = gr.Chatbot( elem_id="chatbot", scale=1, show_copy_button=True, height="70%", layout="panel", ) with gr.Blocks(fill_height=True) as demo: gr.Markdown(HEADER) chat_interface = gr.ChatInterface( fn=respond, stop_btn="Stop Generation", cache_examples=False, multimodal=False, chatbot=chatbot, additional_inputs_accordion=gr.Accordion( label="Parameters", open=False, render=False ), additional_inputs=[ conversation_id, gr.Slider( minimum=1, maximum=4096, step=1, value=1024, label="Max tokens", visible=True, render=False, ), gr.Slider( minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature", visible=True, render=False, ), gr.Slider( minimum=0, maximum=1, step=0.1, value=1.0, label="Top-p", visible=True, render=False, ), ], analytics_enabled=False, ) chatbot.like(vote, [chatbot, conversation_id], None) gr.Markdown(FOOTER) demo.queue(max_size=256, api_open=True) demo.launch(share=True, quiet=True) if __name__ == "__main__": run()