Updated code with SemHash
Browse files- app.py +114 -130
- requirements.txt +1 -2
app.py
CHANGED
@@ -1,88 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
from datasets import load_dataset
|
3 |
-
import numpy as np
|
4 |
-
from model2vec import StaticModel
|
5 |
-
from reach import Reach
|
6 |
from difflib import ndiff
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
11 |
# Default parameters
|
12 |
default_dataset_name = "ag_news"
|
13 |
-
default_dataset1_split = "train"
|
14 |
-
default_dataset2_split = "test"
|
15 |
default_text_column = "text"
|
16 |
default_threshold = 0.9
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
threshold: float = 0.9,
|
22 |
-
batch_size: int = 1024,
|
23 |
-
progress=None
|
24 |
-
) -> tuple[np.ndarray, dict[int, int]]:
|
25 |
-
"""
|
26 |
-
Deduplicate embeddings within one dataset or across two datasets.
|
27 |
-
|
28 |
-
:param embeddings_a: Embeddings of Dataset 1.
|
29 |
-
:param embeddings_b: Optional, embeddings of Dataset 2.
|
30 |
-
:param threshold: Similarity threshold for deduplication.
|
31 |
-
:param batch_size: Batch size for similarity computation.
|
32 |
-
:param progress: Gradio progress tracker for feedback.
|
33 |
-
:return: Deduplicated indices and a mapping of removed indices to their original counterparts.
|
34 |
-
"""
|
35 |
-
if embeddings_b is None:
|
36 |
-
reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
37 |
-
duplicate_to_original = {}
|
38 |
-
results = reach.nearest_neighbor_threshold(
|
39 |
-
embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
40 |
-
)
|
41 |
-
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
|
42 |
-
for sim_idx, _ in similar_items:
|
43 |
-
sim_idx = int(sim_idx)
|
44 |
-
if sim_idx != i and sim_idx not in duplicate_to_original:
|
45 |
-
duplicate_to_original[sim_idx] = i
|
46 |
-
deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
|
47 |
-
return deduplicated_indices, duplicate_to_original
|
48 |
-
else:
|
49 |
-
reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
50 |
-
duplicate_indices_in_b = []
|
51 |
-
duplicate_to_original = {}
|
52 |
-
results = reach.nearest_neighbor_threshold(
|
53 |
-
embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
54 |
-
)
|
55 |
-
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
|
56 |
-
if similar_items:
|
57 |
-
duplicate_indices_in_b.append(i)
|
58 |
-
duplicate_to_original[i] = int(similar_items[0][0])
|
59 |
-
return duplicate_indices_in_b, duplicate_to_original
|
60 |
|
61 |
def display_word_differences(x: str, y: str) -> str:
|
62 |
"""
|
63 |
Display the word-level differences between two texts, formatted to avoid
|
64 |
misinterpretation of Markdown syntax.
|
65 |
-
|
66 |
-
:param x: First text.
|
67 |
-
:param y: Second text.
|
68 |
-
:return: A string showing word-level differences, wrapped in a code block.
|
69 |
"""
|
70 |
diff = ndiff(x.split(), y.split())
|
71 |
formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
|
72 |
return f"```\n{formatted_diff}\n```"
|
73 |
|
74 |
-
def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
|
75 |
-
"""
|
76 |
-
Load texts from a specified dataset and split.
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
:param text_column: Name of the text column.
|
81 |
-
:return: A list of texts from the dataset.
|
82 |
-
"""
|
83 |
ds = load_dataset(dataset_name, split=dataset_split)
|
84 |
return [example[text_column] for example in ds]
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
def perform_deduplication(
|
87 |
deduplication_type: str,
|
88 |
dataset1_name: str,
|
@@ -95,93 +62,107 @@ def perform_deduplication(
|
|
95 |
progress: gr.Progress = gr.Progress(track_tqdm=True)
|
96 |
):
|
97 |
"""
|
98 |
-
Perform deduplication on one or two datasets
|
99 |
-
|
100 |
-
:param deduplication_type: 'Single dataset' or 'Cross-dataset'.
|
101 |
-
:param dataset1_name: Name of the first dataset.
|
102 |
-
:param dataset1_split: Split of the first dataset.
|
103 |
-
:param dataset1_text_column: Text column of the first dataset.
|
104 |
-
:param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
|
105 |
-
:param dataset2_split: Optional, split of the second dataset.
|
106 |
-
:param dataset2_text_column: Optional, text column of the second dataset.
|
107 |
-
:param threshold: Similarity threshold for deduplication.
|
108 |
-
:param progress: Gradio progress tracker.
|
109 |
-
:return: Status updates and result text for the Gradio interface.
|
110 |
"""
|
111 |
try:
|
112 |
threshold = float(threshold)
|
113 |
|
114 |
-
# Load
|
115 |
yield "Loading Dataset 1...", ""
|
116 |
texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
|
117 |
-
yield "Computing embeddings for Dataset 1...", ""
|
118 |
-
embeddings1 = model.encode(texts1, show_progressbar=True)
|
119 |
|
120 |
if deduplication_type == "Single dataset":
|
121 |
-
#
|
122 |
-
yield "Deduplicating within Dataset 1...", ""
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
result_text = (
|
129 |
-
f"**Total documents:** {
|
130 |
f"**Duplicates found:** {num_duplicates}\n\n"
|
131 |
-
f"**Unique documents after deduplication:** {
|
132 |
+ "-" * 50 + "\n\n"
|
133 |
)
|
134 |
|
|
|
135 |
if num_duplicates > 0:
|
136 |
result_text += "**Example duplicates:**\n\n"
|
137 |
-
for
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
else:
|
148 |
result_text += "No duplicates found."
|
149 |
|
150 |
yield "Deduplication completed.", result_text
|
151 |
|
152 |
else:
|
153 |
-
#
|
154 |
yield "Loading Dataset 2...", ""
|
155 |
texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
|
156 |
-
yield "Computing embeddings for Dataset 2...", ""
|
157 |
-
embeddings2 = model.encode(texts2, show_progressbar=True)
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
num_duplicates = len(duplicate_indices)
|
166 |
result_text = (
|
167 |
-
f"**Total documents in {dataset2_name}/{dataset2_split}:** {
|
168 |
f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
|
169 |
-
f"**Unique documents after deduplication:** {
|
170 |
+ "-" * 50 + "\n\n"
|
171 |
)
|
172 |
|
173 |
if num_duplicates > 0:
|
174 |
result_text += "**Example duplicates from Dataset 2:**\n\n"
|
175 |
-
for
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
else:
|
186 |
result_text += "No duplicates found."
|
187 |
|
@@ -191,44 +172,47 @@ def perform_deduplication(
|
|
191 |
yield f"An error occurred: {e}", ""
|
192 |
raise e
|
193 |
|
194 |
-
|
|
|
195 |
with gr.Blocks(theme=gr.themes.Ocean(), css="#status_output { height: 50px; overflow: auto; }") as demo:
|
196 |
-
gr.Markdown("# Semantic Deduplication")
|
197 |
gr.Markdown("""
|
198 |
-
This demo showcases semantic deduplication using
|
199 |
-
It can be used to identify duplicate texts within a single dataset or across two datasets
|
200 |
-
You can adjust the similarity threshold to control the strictness of the deduplication
|
201 |
-
|
|
|
|
|
202 |
""")
|
203 |
|
204 |
deduplication_type = gr.Radio(
|
205 |
-
choices=["Cross-dataset", "Single dataset"],
|
206 |
label="Deduplication Type",
|
207 |
-
value="Cross-dataset", #
|
208 |
)
|
209 |
|
210 |
with gr.Row():
|
211 |
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
212 |
-
dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
213 |
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
214 |
|
215 |
-
dataset2_inputs = gr.Column(visible=True)
|
216 |
with dataset2_inputs:
|
217 |
with gr.Row():
|
218 |
dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
|
219 |
-
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
220 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
221 |
|
222 |
threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
223 |
|
224 |
-
with gr.Row():
|
225 |
compute_button = gr.Button("Deduplicate")
|
226 |
|
227 |
status_output = gr.Markdown(elem_id="status_output")
|
228 |
result_output = gr.Markdown()
|
229 |
|
230 |
def update_visibility(choice: str):
|
231 |
-
return gr.update(visible=choice == "Cross-dataset")
|
232 |
|
233 |
deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)
|
234 |
|
@@ -247,5 +231,5 @@ with gr.Blocks(theme=gr.themes.Ocean(), css="#status_output { height: 50px; over
|
|
247 |
outputs=[status_output, result_output],
|
248 |
)
|
249 |
|
250 |
-
|
251 |
demo.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
from datasets import load_dataset
|
|
|
|
|
|
|
3 |
from difflib import ndiff
|
4 |
|
5 |
+
from semhash import SemHash
|
6 |
+
from semhash.datamodels import DeduplicationResult
|
7 |
+
|
8 |
+
from model2vec import StaticModel
|
9 |
|
10 |
# Default parameters
|
11 |
default_dataset_name = "ag_news"
|
12 |
+
default_dataset1_split = "train"
|
13 |
+
default_dataset2_split = "test"
|
14 |
default_text_column = "text"
|
15 |
default_threshold = 0.9
|
16 |
|
17 |
+
# Load the model to use
|
18 |
+
model = StaticModel.from_pretrained("minishlab/potion-base-8M")
|
19 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def display_word_differences(x: str, y: str) -> str:
|
22 |
"""
|
23 |
Display the word-level differences between two texts, formatted to avoid
|
24 |
misinterpretation of Markdown syntax.
|
|
|
|
|
|
|
|
|
25 |
"""
|
26 |
diff = ndiff(x.split(), y.split())
|
27 |
formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
|
28 |
return f"```\n{formatted_diff}\n```"
|
29 |
|
|
|
|
|
|
|
30 |
|
31 |
+
def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
|
32 |
+
"""Load texts from a specified dataset split."""
|
|
|
|
|
|
|
33 |
ds = load_dataset(dataset_name, split=dataset_split)
|
34 |
return [example[text_column] for example in ds]
|
35 |
|
36 |
+
|
37 |
+
def deduplicate_single_dataset(texts: list[str], threshold: float) -> DeduplicationResult:
|
38 |
+
"""Deduplicate within a single dataset using SemHash, treating each text as a raw string record."""
|
39 |
+
# Build a SemHash index from the raw texts
|
40 |
+
semhash = SemHash.from_records(records=texts, model=model)
|
41 |
+
# Deduplicate the entire dataset
|
42 |
+
return semhash.self_deduplicate(threshold=threshold)
|
43 |
+
|
44 |
+
|
45 |
+
def deduplicate_two_datasets(texts1: list[str], texts2: list[str], threshold: float) -> DeduplicationResult:
|
46 |
+
"""Deduplicate dataset2 against dataset1, both as raw strings, using SemHash."""
|
47 |
+
# Build SemHash index on dataset1
|
48 |
+
semhash = SemHash.from_records(records=texts1, model=model)
|
49 |
+
# Deduplicate texts2 against dataset1
|
50 |
+
return semhash.deduplicate(records=texts2, threshold=threshold)
|
51 |
+
|
52 |
+
|
53 |
def perform_deduplication(
|
54 |
deduplication_type: str,
|
55 |
dataset1_name: str,
|
|
|
62 |
progress: gr.Progress = gr.Progress(track_tqdm=True)
|
63 |
):
|
64 |
"""
|
65 |
+
Perform deduplication on one or two datasets using SemHash. This function
|
66 |
+
streams status updates to Gradio for user feedback.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
"""
|
68 |
try:
|
69 |
threshold = float(threshold)
|
70 |
|
71 |
+
# Load Dataset 1
|
72 |
yield "Loading Dataset 1...", ""
|
73 |
texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
|
|
|
|
|
74 |
|
75 |
if deduplication_type == "Single dataset":
|
76 |
+
# Single-dataset deduplication
|
77 |
+
yield "Deduplicating within Dataset 1 (SemHash)...", ""
|
78 |
+
result = deduplicate_single_dataset(texts1, threshold=threshold)
|
79 |
+
|
80 |
+
# Sort all duplicates in descending order of their highest score
|
81 |
+
for duprec in result.duplicates:
|
82 |
+
duprec.duplicates.sort(key=lambda x: x[1], reverse=True)
|
83 |
+
|
84 |
+
# Summarize results
|
85 |
+
num_duplicates = len(result.duplicates)
|
86 |
+
deduplicated_count = len(result.deduplicated)
|
87 |
+
total_docs = len(texts1)
|
88 |
+
|
89 |
result_text = (
|
90 |
+
f"**Total documents (Dataset 1):** {total_docs}\n\n"
|
91 |
f"**Duplicates found:** {num_duplicates}\n\n"
|
92 |
+
f"**Unique documents after deduplication:** {deduplicated_count}\n\n"
|
93 |
+ "-" * 50 + "\n\n"
|
94 |
)
|
95 |
|
96 |
+
# Show example duplicates
|
97 |
if num_duplicates > 0:
|
98 |
result_text += "**Example duplicates:**\n\n"
|
99 |
+
for duprec in result.duplicates[:5]:
|
100 |
+
dup_text = duprec.record
|
101 |
+
if duprec.duplicates:
|
102 |
+
orig_text, score = duprec.duplicates[0]
|
103 |
+
differences = display_word_differences(orig_text, dup_text)
|
104 |
+
result_text += (
|
105 |
+
f"**Original:**\n{orig_text}\n\n"
|
106 |
+
f"**Duplicate:**\n{dup_text}\n\n"
|
107 |
+
f"**Similarity Score:** {score:.4f}\n"
|
108 |
+
f"**Differences:**\n{differences}\n"
|
109 |
+
+ "-" * 50 + "\n\n"
|
110 |
+
)
|
111 |
+
else:
|
112 |
+
# Possibly an exact duplicate cluster
|
113 |
+
result_text += (
|
114 |
+
f"**Duplicate:**\n{dup_text}\n\n"
|
115 |
+
"No near-duplicate details available.\n"
|
116 |
+
+ "-" * 50 + "\n\n"
|
117 |
+
)
|
118 |
else:
|
119 |
result_text += "No duplicates found."
|
120 |
|
121 |
yield "Deduplication completed.", result_text
|
122 |
|
123 |
else:
|
124 |
+
# Cross-dataset deduplication
|
125 |
yield "Loading Dataset 2...", ""
|
126 |
texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
|
|
|
|
|
127 |
|
128 |
+
yield "Deduplicating Dataset 2 against Dataset 1 (SemHash)...", ""
|
129 |
+
result = deduplicate_two_datasets(texts1, texts2, threshold=threshold)
|
130 |
+
|
131 |
+
# Sort duplicates in descending order of their highest score
|
132 |
+
for duprec in result.duplicates:
|
133 |
+
duprec.duplicates.sort(key=lambda x: x[1], reverse=True)
|
134 |
+
|
135 |
+
num_duplicates = len(result.duplicates)
|
136 |
+
total_docs2 = len(texts2)
|
137 |
+
deduplicated_count = len(result.deduplicated)
|
138 |
|
|
|
139 |
result_text = (
|
140 |
+
f"**Total documents in {dataset2_name}/{dataset2_split}:** {total_docs2}\n\n"
|
141 |
f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
|
142 |
+
f"**Unique documents after deduplication:** {deduplicated_count}\n\n"
|
143 |
+ "-" * 50 + "\n\n"
|
144 |
)
|
145 |
|
146 |
if num_duplicates > 0:
|
147 |
result_text += "**Example duplicates from Dataset 2:**\n\n"
|
148 |
+
for duprec in result.duplicates[:5]:
|
149 |
+
dup_text = duprec.record # The "duplicate" text from dataset2
|
150 |
+
if duprec.duplicates:
|
151 |
+
orig_text, score = duprec.duplicates[0]
|
152 |
+
differences = display_word_differences(orig_text, dup_text)
|
153 |
+
result_text += (
|
154 |
+
f"**Original (Dataset 1):**\n{orig_text}\n\n"
|
155 |
+
f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
|
156 |
+
f"**Similarity Score:** {score:.4f}\n"
|
157 |
+
f"**Differences:**\n{differences}\n"
|
158 |
+
+ "-" * 50 + "\n\n"
|
159 |
+
)
|
160 |
+
else:
|
161 |
+
result_text += (
|
162 |
+
f"**Potential Duplicate (Dataset 2):**\n{dup_text}\n\n"
|
163 |
+
"No near-duplicate details available.\n"
|
164 |
+
+ "-" * 50 + "\n\n"
|
165 |
+
)
|
166 |
else:
|
167 |
result_text += "No duplicates found."
|
168 |
|
|
|
172 |
yield f"An error occurred: {e}", ""
|
173 |
raise e
|
174 |
|
175 |
+
|
176 |
+
# --- Gradio App ---
|
177 |
with gr.Blocks(theme=gr.themes.Ocean(), css="#status_output { height: 50px; overflow: auto; }") as demo:
|
178 |
+
gr.Markdown("# Semantic Text Deduplication Using SemHash")
|
179 |
gr.Markdown("""
|
180 |
+
This demo showcases **semantic deduplication** using [SemHash](https://github.com/MinishLab/semhash) for HuggingFace datasets, using a [Model2Vec](https://github.com/MinishLab/model2vec) encoder.
|
181 |
+
It can be used to identify duplicate texts within a **single dataset** or across **two datasets**.
|
182 |
+
You can adjust the similarity threshold to control the strictness of the deduplication.
|
183 |
+
|
184 |
+
**NOTE**: This demo runs on a free CPU backend, so it may be slow for large datasets.
|
185 |
+
For faster results, please run the code locally.
|
186 |
""")
|
187 |
|
188 |
deduplication_type = gr.Radio(
|
189 |
+
choices=["Cross-dataset", "Single dataset"],
|
190 |
label="Deduplication Type",
|
191 |
+
value="Cross-dataset", # default
|
192 |
)
|
193 |
|
194 |
with gr.Row():
|
195 |
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
196 |
+
dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
197 |
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
198 |
|
199 |
+
dataset2_inputs = gr.Column(visible=True)
|
200 |
with dataset2_inputs:
|
201 |
with gr.Row():
|
202 |
dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
|
203 |
+
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
204 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
205 |
|
206 |
threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
207 |
|
208 |
+
with gr.Row():
|
209 |
compute_button = gr.Button("Deduplicate")
|
210 |
|
211 |
status_output = gr.Markdown(elem_id="status_output")
|
212 |
result_output = gr.Markdown()
|
213 |
|
214 |
def update_visibility(choice: str):
|
215 |
+
return gr.update(visible=(choice == "Cross-dataset"))
|
216 |
|
217 |
deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)
|
218 |
|
|
|
231 |
outputs=[status_output, result_output],
|
232 |
)
|
233 |
|
|
|
234 |
demo.launch()
|
235 |
+
|
requirements.txt
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
-
|
2 |
-
model2vec
|
3 |
numpy
|
4 |
datasets
|
5 |
tqdm
|
|
|
1 |
+
semhash>=0.2.0
|
|
|
2 |
numpy
|
3 |
datasets
|
4 |
tqdm
|