minh21's picture
Create app.py
1f4a7d9
raw
history blame
4.54 kB
import gradio as gr
from gradio.components import Textbox, Checkbox
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
from peft import PeftModel, PeftConfig
import torch
import datasets
# Load your fine-tuned model and tokenizer
model_name = "google/flan-t5-large"
peft_name = "legacy107/flan-t5-large-ia3-cpgQA"
tokenizer = AutoTokenizer.from_pretrained(model_name)
pretrained_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model = PeftModel.from_pretrained(model, peft_name)
peft_name = "legacy107/flan-t5-large-ia3-bioasq-paraphrase"
peft_config = PeftConfig.from_pretrained(peft_name)
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
paraphrase_model = PeftModel.from_pretrained(paraphrase_model, peft_name)
max_length = 512
max_target_length = 200
# Load your dataset
dataset = datasets.load_dataset("minh21/cpgQA-v1.0-unique-context-test-10-percent-validation-10-percent", split="test")
dataset = dataset.shuffle()
dataset = dataset.select(range(10))
def paraphrase_answer(question, answer, use_pretrained=False):
# Combine question and context
input_text = f"question: {question}. Paraphrase the answer to make it more natural answer: {answer}"
# Tokenize the input text
input_ids = tokenizer(
input_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).input_ids
# Generate the answer
with torch.no_grad():
if use_pretrained:
generated_ids = pretrained_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
else:
generated_ids = paraphrase_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
# Decode and return the generated answer
paraphrased_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return paraphrased_answer
# Define your function to generate answers
def generate_answer(question, context, ground_truth, do_pretrained, do_natural, do_pretrained_natural):
# Combine question and context
input_text = f"question: {question} context: {context}"
# Tokenize the input text
input_ids = tokenizer(
input_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).input_ids
# Generate the answer
with torch.no_grad():
generated_ids = model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
# Decode and return the generated answer
generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
# Paraphrase answer
paraphrased_answer = ""
if do_natural:
paraphrased_answer = paraphrase_answer(question, generated_answer)
# Get pretrained model's answer
pretrained_answer = ""
if do_pretrained:
with torch.no_grad():
pretrained_generated_ids = pretrained_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
pretrained_answer = tokenizer.decode(pretrained_generated_ids[0], skip_special_tokens=True)
# Get pretrained model's natural answer
pretrained_paraphrased_answer = ""
if do_pretrained_natural:
pretrained_paraphrased_answer = paraphrase_answer(question, generated_answer, True)
return generated_answer, paraphrased_answer, pretrained_answer, pretrained_paraphrased_answer
# Define a function to list examples from the dataset
def list_examples():
examples = []
for example in dataset:
context = example["context"]
question = example["question"]
answer = example["answer_text"]
examples.append([question, context, answer, True, True, True])
return examples
# Create a Gradio interface
iface = gr.Interface(
fn=generate_answer,
inputs=[
Textbox(label="Question"),
Textbox(label="Context"),
Textbox(label="Ground truth"),
Checkbox(label="Include pretrained model's answer"),
Checkbox(label="Include natural answer"),
Checkbox(label="Include pretrained model's natural answer")
],
outputs=[
Textbox(label="Generated Answer"),
Textbox(label="Natural Answer"),
Textbox(label="Pretrained Model's Answer"),
Textbox(label="Pretrained Model's Natural Answer")
],
examples=list_examples()
)
# Launch the Gradio interface
iface.launch()