Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ..utils.stylization_block import StylizationBlock | |
from ..builder import ATTENTIONS | |
class BaseMixedAttention(nn.Module): | |
def __init__(self, latent_dim, | |
text_latent_dim, | |
num_heads, | |
dropout, | |
time_embed_dim): | |
super().__init__() | |
self.num_heads = num_heads | |
self.norm = nn.LayerNorm(latent_dim) | |
self.text_norm = nn.LayerNorm(text_latent_dim) | |
self.query = nn.Linear(latent_dim, latent_dim) | |
self.key_text = nn.Linear(text_latent_dim, latent_dim) | |
self.value_text = nn.Linear(text_latent_dim, latent_dim) | |
self.key_motion = nn.Linear(latent_dim, latent_dim) | |
self.value_motion = nn.Linear(latent_dim, latent_dim) | |
self.dropout = nn.Dropout(dropout) | |
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout) | |
def forward(self, x, xf, emb, src_mask, cond_type, **kwargs): | |
""" | |
x: B, T, D | |
xf: B, N, L | |
""" | |
B, T, D = x.shape | |
N = xf.shape[1] + x.shape[1] | |
H = self.num_heads | |
# B, T, D | |
query = self.query(self.norm(x)).view(B, T, H, -1) | |
# B, N, D | |
text_cond_type = ((cond_type % 10) > 0).float().view(B, 1, 1).repeat(1, xf.shape[1], 1) | |
key = torch.cat(( | |
self.key_text(self.text_norm(xf)), | |
self.key_motion(self.norm(x)) | |
), dim=1).view(B, N, H, -1) | |
attention = torch.einsum('bnhl,bmhl->bnmh', query, key) | |
motion_mask = src_mask.view(B, 1, T, 1) | |
text_mask = text_cond_type.view(B, 1, -1, 1) | |
mask = torch.cat((text_mask, motion_mask), dim=2) | |
attention = attention + (1 - mask) * -1000000 | |
attention = F.softmax(attention, dim=2) | |
value = torch.cat(( | |
self.value_text(self.text_norm(xf)) * text_cond_type, | |
self.value_motion(self.norm(x)) * src_mask, | |
), dim=1).view(B, N, H, -1) | |
y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D) | |
y = x + self.proj_out(y, emb) | |
return y | |
class BaseSelfAttention(nn.Module): | |
def __init__(self, latent_dim, | |
num_heads, | |
dropout, | |
time_embed_dim): | |
super().__init__() | |
self.num_heads = num_heads | |
self.norm = nn.LayerNorm(latent_dim) | |
self.query = nn.Linear(latent_dim, latent_dim) | |
self.key = nn.Linear(latent_dim, latent_dim) | |
self.value = nn.Linear(latent_dim, latent_dim) | |
self.dropout = nn.Dropout(dropout) | |
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout) | |
def forward(self, x, emb, src_mask, **kwargs): | |
""" | |
x: B, T, D | |
""" | |
B, T, D = x.shape | |
H = self.num_heads | |
# B, T, D | |
query = self.query(self.norm(x)).view(B, T, H, -1) | |
# B, N, D | |
key = self.key(self.norm(x)).view(B, T, H, -1) | |
attention = torch.einsum('bnhl,bmhl->bnmh', query, key) | |
mask = src_mask.view(B, 1, T, 1) | |
attention = attention + (1 - mask) * -1000000 | |
attention = F.softmax(attention, dim=2) | |
value = (self.value(self.norm(x)) * src_mask).view(B, T, H, -1) | |
y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D) | |
y = x + self.proj_out(y, emb) | |
return y | |
class BaseCrossAttention(nn.Module): | |
def __init__(self, latent_dim, | |
text_latent_dim, | |
num_heads, | |
dropout, | |
time_embed_dim): | |
super().__init__() | |
self.num_heads = num_heads | |
self.norm = nn.LayerNorm(latent_dim) | |
self.text_norm = nn.LayerNorm(text_latent_dim) | |
self.query = nn.Linear(latent_dim, latent_dim) | |
self.key = nn.Linear(text_latent_dim, latent_dim) | |
self.value = nn.Linear(text_latent_dim, latent_dim) | |
self.dropout = nn.Dropout(dropout) | |
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout) | |
def forward(self, x, xf, emb, src_mask, cond_type, **kwargs): | |
""" | |
x: B, T, D | |
xf: B, N, L | |
""" | |
B, T, D = x.shape | |
N = xf.shape[1] | |
H = self.num_heads | |
# B, T, D | |
query = self.query(self.norm(x)).view(B, T, H, -1) | |
# B, N, D | |
text_cond_type = ((cond_type % 10) > 0).float().view(B, 1, 1).repeat(1, xf.shape[1], 1) | |
key = self.key(self.text_norm(xf)).view(B, N, H, -1) | |
attention = torch.einsum('bnhl,bmhl->bnmh', query, key) | |
mask = text_cond_type.view(B, 1, -1, 1) | |
attention = attention + (1 - mask) * -1000000 | |
attention = F.softmax(attention, dim=2) | |
value = (self.value(self.text_norm(xf)) * text_cond_type).view(B, N, H, -1) | |
y = torch.einsum('bnmh,bmhl->bnhl', attention, value).reshape(B, T, D) | |
y = x + self.proj_out(y, emb) | |
return y | |