Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from sentence_transformers import SentenceTransformer
|
@@ -7,7 +8,10 @@ import os
|
|
7 |
import logging
|
8 |
from groq import Groq
|
9 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
10 |
-
|
|
|
|
|
|
|
11 |
# β
Initialize FastAPI
|
12 |
app = FastAPI()
|
13 |
|
@@ -19,11 +23,12 @@ if not GROQ_API_KEY:
|
|
19 |
client = Groq(api_key=GROQ_API_KEY) # β
Ensure the API key is passed correctly
|
20 |
|
21 |
|
22 |
-
# β
Load AI Models
|
23 |
-
similarity_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
24 |
-
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
25 |
-
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base")
|
26 |
-
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base")
|
|
|
27 |
|
28 |
# β
Load datasets
|
29 |
try:
|
|
|
1 |
+
import os
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
from pydantic import BaseModel
|
4 |
from sentence_transformers import SentenceTransformer
|
|
|
8 |
import logging
|
9 |
from groq import Groq
|
10 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
11 |
+
# β
Set a writable cache directory
|
12 |
+
os.environ["HF_HOME"] = "/tmp/huggingface"
|
13 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
14 |
+
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/huggingface"
|
15 |
# β
Initialize FastAPI
|
16 |
app = FastAPI()
|
17 |
|
|
|
23 |
client = Groq(api_key=GROQ_API_KEY) # β
Ensure the API key is passed correctly
|
24 |
|
25 |
|
26 |
+
# β
Load AI Models (Now uses /tmp/huggingface as cache)
|
27 |
+
similarity_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", cache_folder="/tmp/huggingface")
|
28 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", cache_folder="/tmp/huggingface")
|
29 |
+
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface")
|
30 |
+
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base", cache_dir="/tmp/huggingface")
|
31 |
+
|
32 |
|
33 |
# β
Load datasets
|
34 |
try:
|