|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from sentence_transformers import SentenceTransformer |
|
import faiss |
|
import pandas as pd |
|
import os |
|
from groq import Groq |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
app = FastAPI() |
|
|
|
|
|
os.environ["GROQ_API_KEY"] = "your-groq-api-key" |
|
client = Groq(api_key=os.environ["GROQ_API_KEY"]) |
|
|
|
|
|
similarity_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2") |
|
embedding_model = SentenceTransformer("all-MiniLM-L6-v2") |
|
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("google/long-t5-tglobal-base") |
|
summarization_tokenizer = AutoTokenizer.from_pretrained("google/long-t5-tglobal-base") |
|
|
|
|
|
recommendations_df = pd.read_csv("treatment_recommendations.csv") |
|
questions_df = pd.read_csv("symptom_questions.csv") |
|
|
|
|
|
treatment_embeddings = similarity_model.encode(recommendations_df["Disorder"].tolist(), convert_to_numpy=True) |
|
index = faiss.IndexFlatIP(treatment_embeddings.shape[1]) |
|
index.add(treatment_embeddings) |
|
|
|
|
|
question_embeddings = embedding_model.encode(questions_df["Questions"].tolist(), convert_to_numpy=True) |
|
question_index = faiss.IndexFlatL2(question_embeddings.shape[1]) |
|
question_index.add(question_embeddings) |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
message: str |
|
|
|
class SummaryRequest(BaseModel): |
|
chat_history: list |
|
|
|
|
|
def retrieve_questions(user_input): |
|
"""Retrieve the most relevant individual diagnostic question using FAISS.""" |
|
input_embedding = embedding_model.encode([user_input], convert_to_numpy=True) |
|
_, indices = question_index.search(input_embedding, 1) |
|
|
|
|
|
question_block = questions_df["Questions"].iloc[indices[0][0]] |
|
split_questions = question_block.split(", ") |
|
best_question = split_questions[0] |
|
|
|
return best_question |
|
|
|
|
|
def generate_empathetic_response(user_input, retrieved_question): |
|
"""Use Groq API (LLaMA-3) to generate one empathetic response.""" |
|
|
|
|
|
prompt = f""" |
|
The user said: "{user_input}" |
|
|
|
Relevant Question: |
|
- {retrieved_question} |
|
|
|
You are an empathetic AI psychiatrist. Rephrase this question naturally in a human-like way. |
|
Acknowledge the user's emotions before asking the question. |
|
|
|
Example format: |
|
- "I understand that anxiety can be overwhelming. Can you tell me more about when you started feeling this way?" |
|
|
|
Generate only one empathetic response. |
|
""" |
|
|
|
chat_completion = client.chat.completions.create( |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful, empathetic AI psychiatrist."}, |
|
{"role": "user", "content": prompt} |
|
], |
|
model="llama3-8b", |
|
temperature=0.8, |
|
top_p=0.9 |
|
) |
|
|
|
return chat_completion.choices[0].message.content |
|
|
|
|
|
@app.post("/get_questions") |
|
def get_recommended_questions(request: ChatRequest): |
|
"""Retrieve the most relevant diagnostic question and make it more empathetic using Groq API.""" |
|
retrieved_question = retrieve_questions(request.message) |
|
empathetic_response = generate_empathetic_response(request.message, retrieved_question) |
|
|
|
return {"question": empathetic_response} |
|
|
|
|
|
@app.post("/summarize_chat") |
|
def summarize_chat(request: SummaryRequest): |
|
"""Summarize full chat session at the end.""" |
|
chat_text = " ".join(request.chat_history) |
|
inputs = summarization_tokenizer("summarize: " + chat_text, return_tensors="pt", max_length=4096, truncation=True) |
|
summary_ids = summarization_model.generate(inputs.input_ids, max_length=500, num_beams=4, early_stopping=True) |
|
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
return {"summary": summary} |
|
|
|
|
|
@app.post("/detect_disorders") |
|
def detect_disorders(request: SummaryRequest): |
|
"""Detect psychiatric disorders from full chat history at the end.""" |
|
full_chat_text = " ".join(request.chat_history) |
|
text_embedding = similarity_model.encode([full_chat_text], convert_to_numpy=True) |
|
distances, indices = index.search(text_embedding, 3) |
|
disorders = [recommendations_df["Disorder"].iloc[i] for i in indices[0]] |
|
return {"disorders": disorders} |
|
|
|
|
|
@app.post("/get_treatment") |
|
def get_treatment(request: SummaryRequest): |
|
"""Retrieve treatment recommendations based on detected disorders.""" |
|
detected_disorders = detect_disorders(request)["disorders"] |
|
treatments = { |
|
disorder: recommendations_df[recommendations_df["Disorder"] == disorder]["Treatment Recommendation"].values[0] |
|
for disorder in detected_disorders |
|
} |
|
return {"treatments": treatments} |
|
|