Spaces:
Runtime error
Runtime error
File size: 10,779 Bytes
64dc528 442b638 64dc528 020f552 64dc528 442b638 64dc528 442b638 64dc528 442b638 64dc528 0a78c04 7095ec2 0a78c04 64dc528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
"""Run codes."""
# pylint: disable=line-too-long, broad-exception-caught, invalid-name, missing-function-docstring, too-many-instance-attributes, missing-class-docstring
# ruff: noqa: E501
import gc
import os
import platform
import random
import time
from dataclasses import asdict, dataclass, field
from pathlib import Path
# from types import SimpleNamespace
import gradio as gr
import psutil
from about_time import about_time
from ctransformers import AutoModelForCausalLM
from dl_hf_model import dl_hf_model
from loguru import logger
from examples_list import examples_list
url = "https://huggingface.co./TheBloke/WizardLM-1.0-Uncensored-Llama2-13B-GGML/blob/main/wizardlm-1.0-uncensored-llama2-13b.ggmlv3.q4_K_S.bin" # 7.37G, Max RAM required 9.87 GB
LLM = None
gc.collect()
try:
model_loc, file_size = dl_hf_model(url)
except Exception as exc_:
logger.error(exc_)
raise SystemExit(1) from exc_
# raise SystemExit(0)
# Prompt template: Guanaco
# {past_history}
prompt_template = """You are a helpful assistant. Let's think step by step.
### Human:
{question}
### Assistant:"""
human_prefix = "### Human"
ai_prefix = "### Assistant"
stop_list = [f"{human_prefix}:"]
# Prompt template: WizardLM-Vicuna
prompt_template = """You are a helpful AI assistant.
USER: {question}
ASSISTANT: """
human_prefix = "USER"
ai_prefix = "ASSISTANT"
stop_list = [f"{human_prefix}:"]
_ = psutil.cpu_count(logical=False) - 1
cpu_count: int = int(_) if _ else 1
logger.debug(f"{cpu_count=}")
logger.debug(f"{model_loc=}")
LLM = AutoModelForCausalLM.from_pretrained(
model_loc,
model_type="llama",
threads=cpu_count,
)
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
@dataclass
class GenerationConfig:
temperature: float = 0.7
top_k: int = 50
top_p: float = 0.9
repetition_penalty: float = 1.0
max_new_tokens: int = 512
seed: int = 42
reset: bool = False
stream: bool = True
threads: int = cpu_count
stop: list[str] = field(default_factory=lambda: stop_list)
def generate(
question: str,
llm=LLM,
config: GenerationConfig = GenerationConfig(),
):
"""Run model inference, will return a Generator if streaming is true."""
# _ = prompt_template.format(question=question)
# print(_)
prompt = prompt_template.format(question=question)
return llm(
prompt,
**asdict(config),
)
logger.debug(f"{asdict(GenerationConfig())=}")
def user(user_message, history):
# return user_message, history + [[user_message, None]]
if history is None:
history = []
history.append([user_message, None])
return user_message, history # keep user_message
def user1(user_message, history):
# return user_message, history + [[user_message, None]]
if history is None:
history = []
history.append([user_message, None])
return "", history # clear user_message
def bot_(history):
user_message = history[-1][0]
resp = random.choice(["How are you?", "I love you", "I'm very hungry"])
bot_message = user_message + ": " + resp
history[-1][1] = ""
for character in bot_message:
history[-1][1] += character
time.sleep(0.02)
yield history
history[-1][1] = resp
yield history
def bot(history):
user_message = ""
try:
user_message = history[-1][0]
except Exception as exc:
logger.error(exc)
response = []
logger.debug(f"{user_message=}")
with about_time() as atime: # type: ignore
flag = 1
prefix = ""
then = time.time()
logger.debug("about to generate")
config = GenerationConfig(reset=True)
for elm in generate(user_message, config=config):
if flag == 1:
logger.debug("in the loop")
prefix = f"({time.time() - then:.2f}s) "
flag = 0
print(prefix, end="", flush=True)
logger.debug(f"{prefix=}")
print(elm, end="", flush=True)
# logger.debug(f"{elm}")
response.append(elm)
history[-1][1] = prefix + "".join(response)
yield history
if response:
_ = (
f"(time elapsed: {atime.duration_human}, " # type: ignore
f"{atime.duration/len(''.join(response)):.2f}s/char)" # type: ignore
)
else:
_ = (
"bummer...nothing generated "
f"(time elapsed: {atime.duration_human})" # type: ignore
)
history[-1][1] = "".join(response) + f"\n{_}"
yield history
def predict_api(prompt):
logger.debug(f"{prompt=}")
try:
# user_prompt = prompt
config = GenerationConfig(
temperature=0.2,
top_k=10,
top_p=0.9,
repetition_penalty=1.0,
max_new_tokens=512, # adjust as needed
seed=42,
reset=True, # reset history (cache)
stream=False,
# threads=cpu_count,
# stop=prompt_prefix[1:2],
)
response = generate(
prompt,
config=config,
)
logger.debug(f"api: {response=}")
except Exception as exc:
logger.error(exc)
response = f"{exc=}"
# bot = {"inputs": [response]}
# bot = [(prompt, response)]
return response
css = """
.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}
.disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;}
.xsmall {font-size: x-small;}
"""
logger.info("start block")
with gr.Blocks(
title=f"{Path(model_loc).name}",
# theme=gr.themes.Soft(text_size="sm", spacing_size="sm"),
theme=gr.themes.Glass(text_size="sm", spacing_size="sm"),
css=css,
) as block:
# buff_var = gr.State("")
with gr.Accordion("🎈 Info", open=False):
gr.Markdown(
f"""<h5><center>{Path(model_loc).name}</center></h4>
Most examples are meant for another model.
You probably should try to test
some related prompts.""",
elem_classes="xsmall",
)
# chatbot = gr.Chatbot().style(height=700) # 500
chatbot = gr.Chatbot(height=500)
# buff = gr.Textbox(show_label=False, visible=True)
with gr.Row():
with gr.Column(scale=5):
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Ask me anything (press Shift+Enter or click Submit to send)",
show_label=False,
# container=False,
lines=6,
max_lines=30,
show_copy_button=True,
# ).style(container=False)
)
with gr.Column(scale=1, min_width=50):
with gr.Row():
submit = gr.Button("Submit", elem_classes="xsmall")
stop = gr.Button("Stop", visible=True)
clear = gr.Button("Clear History", visible=True)
with gr.Row(visible=False):
with gr.Accordion("Advanced Options:", open=False):
with gr.Row():
with gr.Column(scale=2):
system = gr.Textbox(
label="System Prompt",
value=prompt_template,
show_label=False,
container=False,
# ).style(container=False)
)
with gr.Column():
with gr.Row():
change = gr.Button("Change System Prompt")
reset = gr.Button("Reset System Prompt")
with gr.Accordion("Example Inputs", open=True):
examples = gr.Examples(
examples=examples_list,
inputs=[msg],
examples_per_page=40,
)
# with gr.Row():
with gr.Accordion("Disclaimer", open=False):
_ = Path(model_loc).name
gr.Markdown(
f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
"factually accurate information. {_} was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
msg_submit_event = msg.submit(
# fn=conversation.user_turn,
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
# api_name=None,
).then(bot, chatbot, chatbot, queue=True)
submit_click_event = submit.click(
# fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg
fn=user1, # clear msg
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
# queue=False,
show_progress="full",
# api_name=None,
).then(bot, chatbot, chatbot, queue=True)
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[msg_submit_event, submit_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
input_text = gr.Text()
api_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
api_btn.click(
predict_api,
input_text,
out_text,
api_name="api",
)
# block.load(update_buff, [], buff, every=1)
# block.load(update_buff, [buff_var], [buff_var, buff], every=1)
# concurrency_count=5, max_size=20
# max_size=36, concurrency_count=14
# CPU cpu_count=2 16G, model 7G
# CPU UPGRADE cpu_count=8 32G, model 7G
# does not work
_ = """
# _ = int(psutil.virtual_memory().total / 10**9 // file_size - 1)
# concurrency_count = max(_, 1)
if psutil.cpu_count(logical=False) >= 8:
# concurrency_count = max(int(32 / file_size) - 1, 1)
else:
# concurrency_count = max(int(16 / file_size) - 1, 1)
# """
# default concurrency_count = 1
# block.queue(concurrency_count=concurrency_count, max_size=5).launch(debug=True)
server_port = 7860
if "forindo" in platform.node():
server_port = 7861
block.queue(max_size=5).launch(
debug=True, server_name="0.0.0.0", server_port=server_port
)
# block.queue(max_size=5).launch(debug=True, server_name="0.0.0.0")
|