Spaces:
Running
on
Zero
Running
on
Zero
Feature(MInference): update the pycuda
Browse files- app.py +10 -8
- minference/modules/minference_forward.py +7 -1
- minference/patch.py +1 -0
app.py
CHANGED
@@ -5,18 +5,13 @@ subprocess.run(
|
|
5 |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
6 |
shell=True,
|
7 |
)
|
8 |
-
subprocess.run(
|
9 |
-
"pip install pycuda==2023.1",
|
10 |
-
shell=True,
|
11 |
-
)
|
12 |
|
13 |
import gradio as gr
|
14 |
import os
|
15 |
import spaces
|
16 |
-
from transformers import
|
17 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
18 |
from threading import Thread
|
19 |
-
from minference import MInference
|
20 |
|
21 |
# Set an environment variable
|
22 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
@@ -63,8 +58,6 @@ h1 {
|
|
63 |
model_name = "gradientai/Llama-3-8B-Instruct-262k"
|
64 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
65 |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") # to("cuda:0")
|
66 |
-
minference_patch = MInference("minference", model_name)
|
67 |
-
model = minference_patch(model)
|
68 |
|
69 |
terminators = [
|
70 |
tokenizer.eos_token_id,
|
@@ -87,6 +80,15 @@ def chat_llama3_8b(message: str,
|
|
87 |
Returns:
|
88 |
str: The generated response.
|
89 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
conversation = []
|
91 |
for user, assistant in history:
|
92 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
|
|
5 |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
6 |
shell=True,
|
7 |
)
|
|
|
|
|
|
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
import os
|
11 |
import spaces
|
12 |
+
from transformers import AutoModelForCausalLM
|
13 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
14 |
from threading import Thread
|
|
|
15 |
|
16 |
# Set an environment variable
|
17 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
58 |
model_name = "gradientai/Llama-3-8B-Instruct-262k"
|
59 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
60 |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") # to("cuda:0")
|
|
|
|
|
61 |
|
62 |
terminators = [
|
63 |
tokenizer.eos_token_id,
|
|
|
80 |
Returns:
|
81 |
str: The generated response.
|
82 |
"""
|
83 |
+
if "has_patch" not in model.__dict__:
|
84 |
+
from minference import MInference
|
85 |
+
global model
|
86 |
+
subprocess.run(
|
87 |
+
"pip install pycuda==2023.1",
|
88 |
+
shell=True,
|
89 |
+
)
|
90 |
+
minference_patch = MInference("minference", model_name)
|
91 |
+
model = minference_patch(model)
|
92 |
conversation = []
|
93 |
for user, assistant in history:
|
94 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
minference/modules/minference_forward.py
CHANGED
@@ -1,10 +1,16 @@
|
|
|
|
|
|
|
|
1 |
import inspect
|
2 |
import json
|
3 |
import os
|
4 |
from importlib import import_module
|
5 |
|
6 |
from transformers.models.llama.modeling_llama import *
|
7 |
-
from
|
|
|
|
|
|
|
8 |
|
9 |
from ..ops.block_sparse_flash_attention import block_sparse_attention
|
10 |
from ..ops.pit_sparse_flash_attention_v2 import vertical_slash_sparse_attention
|
|
|
1 |
+
# Copyright (c) 2024 Microsoft
|
2 |
+
# Licensed under The MIT License [see LICENSE for details]
|
3 |
+
|
4 |
import inspect
|
5 |
import json
|
6 |
import os
|
7 |
from importlib import import_module
|
8 |
|
9 |
from transformers.models.llama.modeling_llama import *
|
10 |
+
from transformers.utils.import_utils import _is_package_available
|
11 |
+
|
12 |
+
if _is_package_available("vllm"):
|
13 |
+
from vllm.attention.backends.flash_attn import *
|
14 |
|
15 |
from ..ops.block_sparse_flash_attention import block_sparse_attention
|
16 |
from ..ops.pit_sparse_flash_attention_v2 import vertical_slash_sparse_attention
|
minference/patch.py
CHANGED
@@ -780,6 +780,7 @@ def minference_patch(model, config):
|
|
780 |
model.model, model.model.__class__
|
781 |
)
|
782 |
model.forward = forward_llama_for_causal_lm.__get__(model, model.__class__)
|
|
|
783 |
|
784 |
print("Patched model for minference..")
|
785 |
return model
|
|
|
780 |
model.model, model.model.__class__
|
781 |
)
|
782 |
model.forward = forward_llama_for_causal_lm.__get__(model, model.__class__)
|
783 |
+
model.has_patch = True
|
784 |
|
785 |
print("Patched model for minference..")
|
786 |
return model
|