File size: 18,060 Bytes
43a7079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b215053
43a7079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import torch
import numpy as np

import triton
import triton.language as tl
import pycuda.autoprimaryctx
from pycuda.compiler import SourceModule

from flash_attn import flash_attn_varlen_func


# @triton.autotune(
#    configs=[
#        triton.Config({}, num_stages=1, num_warps=4),
#        triton.Config({}, num_stages=1, num_warps=8),
#        triton.Config({}, num_stages=2, num_warps=4),
#        triton.Config({}, num_stages=2, num_warps=8),
#        triton.Config({}, num_stages=3, num_warps=4),
#        triton.Config({}, num_stages=3, num_warps=8),
#        triton.Config({}, num_stages=4, num_warps=4),
#        triton.Config({}, num_stages=4, num_warps=8),
#        triton.Config({}, num_stages=5, num_warps=4),
#        triton.Config({}, num_stages=5, num_warps=8),
#    ],
#    key=['N_CTX'],
# )
@triton.jit
def triton_block_sparse_attn_kernel(
    Q, K, V, seqlens, sm_scale,
    block_index,
    Out,
    stride_qz, stride_qh, stride_qm, stride_qk,
    stride_kz, stride_kh, stride_kn, stride_kk,
    stride_vz, stride_vh, stride_vn, stride_vk,
    stride_oz, stride_oh, stride_om, stride_ok,
    Z, H, N_CTX,
    NUM_ROWS, MAX_BLOCKS_PRE_ROW,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
    BLOCK_DMODEL: tl.constexpr,
    dtype: tl.constexpr,
):
    start_m = tl.program_id(0)
    off_hz = tl.program_id(1)

    seqlen = tl.load(seqlens + off_hz // H)
    if start_m * BLOCK_M >= seqlen:
        return

    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_DMODEL)

    qo_offset = (off_hz // H) * stride_qz + (off_hz % H) * stride_qh
    kv_offset = (off_hz // H) * stride_kz + (off_hz % H) * stride_kh

    q_ptrs = Q + qo_offset + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk
    k_ptrs = K + kv_offset + offs_d[:, None] * stride_kk
    v_ptrs = V + kv_offset + offs_d[None, :] * stride_vk
    o_ptrs = Out + qo_offset + offs_m[:, None] * stride_om + offs_d[None, :] * stride_ok

    blocks_ptr = block_index + (off_hz * NUM_ROWS + start_m) * MAX_BLOCKS_PRE_ROW

    # initialize pointer to m and l
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
    acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
    # scale sm_scale by log_2(e) and use
    # 2^x instead of exp in the loop because CSE and LICM
    # don't work as expected with `exp` in the loop
    qk_scale = sm_scale * 1.44269504
    # load q: it will stay in SRAM throughout
    q = tl.load(q_ptrs)
    q = (q * qk_scale).to(dtype)

    # loop over k, v and update accumulator
    m_mask = offs_m[:, None] < seqlen
    block_count = tl.minimum((start_m + 1) * BLOCK_M // BLOCK_N, MAX_BLOCKS_PRE_ROW)

    for sparse_block_idx in range(block_count):
        real_block_idx = tl.load(blocks_ptr + sparse_block_idx)
        start_n = real_block_idx * BLOCK_N
        cols = start_n + offs_n
        # -- load k, v --
        k = tl.load(k_ptrs + cols[None, :] * stride_kn)
        v = tl.load(v_ptrs + cols[:, None] * stride_vn)
        # -- compute qk --
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        # if start_n + BLOCK_N < seqlen:
        #     qk = tl.where(m_mask, qk, float("-inf"))
        # else:
        causal_mask = cols[None, :] <= offs_m[:, None]
        qk = tl.where(m_mask & causal_mask, qk, float("-inf"))
        qk += tl.dot(q, k)
        # -- compute scaling constant --
        m_i_new = tl.maximum(m_i, tl.max(qk, 1))
        alpha = tl.math.exp2(m_i - m_i_new)
        p = tl.math.exp2(qk - m_i_new[:, None])
        # -- scale and update acc --
        acc_scale = l_i * 0 + alpha  # workaround some compiler bug
        acc *= acc_scale[:, None]
        acc += tl.dot(p.to(dtype), v)
        # -- update m_i and l_i --
        l_i = l_i * alpha + tl.sum(p, 1)
        m_i = m_i_new

    # write back O
    acc /= l_i[:, None]
    tl.store(o_ptrs, acc.to(dtype), mask=m_mask)


def triton_block_sparse_forward(
    q,                 # [BATCH, N_HEADS, N_CTX, D_HEAD]
    k,                 # [BATCH, N_HEADS, N_CTX, D_HEAD]
    v,                 # [BATCH, N_HEADS, N_CTX, D_HEAD]
    seqlens,           # [BATCH, ]
    block_index,       # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), MAX_BLOCKS_PRE_ROW]
    sm_scale,
    block_size_M=64,
    block_size_N=64,
) -> torch.Tensor:
    # shape constraints
    Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
    assert Lq == Lk and Lk == Lv
    assert Lk in {16, 32, 64, 128}
    o = torch.zeros_like(q)
    grid = (triton.cdiv(q.shape[2], block_size_M), q.shape[0] * q.shape[1], 1)
    dtype = tl.bfloat16 if q.dtype == torch.bfloat16 else tl.float16
    triton_block_sparse_attn_kernel[grid](
        q, k, v, seqlens, sm_scale,
        block_index,
        o,
        q.stride(0), q.stride(1), q.stride(2), q.stride(3),
        k.stride(0), k.stride(1), k.stride(2), k.stride(3),
        v.stride(0), v.stride(1), v.stride(2), v.stride(3),
        o.stride(0), o.stride(1), o.stride(2), o.stride(3),
        q.shape[0], q.shape[1], q.shape[2],
        block_index.shape[-2], block_index.shape[-1],
        BLOCK_M=block_size_M, BLOCK_N=block_size_N,
        BLOCK_DMODEL=Lk,
        dtype=dtype,
        num_warps=4, num_stages=2,
    )

    return o


def torch_build_index(
    query: torch.Tensor,     # [BATCH, N_HEADS, N_CTX, D_HEAD]
    key: torch.Tensor,       # [BATCH, N_HEADS, N_CTX, D_HEAD]
    top_k: int,
    block_size_M: int = 64,
    block_size_N: int = 64,
):
    batch_size, num_heads, context_size, head_dim = query.shape
    query_pool = query.reshape((batch_size, num_heads, -1, block_size_M, head_dim)).mean(dim=-2)
    key_pool = key.reshape((batch_size, num_heads, -1, block_size_N, head_dim)).mean(dim=-2)
    arange_M = torch.arange(query_pool.shape[-2], dtype=torch.int32, device=query.device) * block_size_M
    arange_N = torch.arange(key_pool.shape[-2], dtype=torch.int32, device=key.device) * block_size_N
    p_pool = torch.einsum(f'bhmk, bhnk -> bhmn', query_pool, key_pool)
    p_pool = p_pool.where(arange_M[None, None, :, None] >= arange_N[None, None, None, :], -torch.inf)
    top_k = min(top_k, context_size // block_size_N)
    return torch.topk(p_pool, top_k, dim=-1).indices.to(torch.int32).sort(dim=-1).values


def make_causal_mask(seqlens, device, context_size):
    batch_size = seqlens.shape[0]
    arange = torch.arange(context_size, dtype=torch.int32, device=device)
    causal_mask = arange[None, None, :, None] >= arange[None, None, None, :]
    causal_mask = causal_mask.repeat((batch_size, 1, 1, 1))
    for b, seqlen in enumerate(seqlens):
        causal_mask[b, :, seqlen:, :] = False
        causal_mask[b, :, :, seqlen:] = False
    return causal_mask


def make_block_mask(block_index, causal_mask, device, block_size_M=64, block_size_N=64):
    batch_size, num_heads, num_rows, max_blocks_per_row = block_index.shape
    context_size = causal_mask.shape[-1]
    block_mask = torch.zeros((batch_size, num_heads, context_size, context_size), dtype=torch.bool, device=device)
    for b in range(batch_size):
        for h in range(num_heads):
            for i in range(num_rows):
                start_m = i * block_size_M
                end_m = start_m + block_size_M
                for j in range(max_blocks_per_row):
                    real_j = block_index[b, h, i, j]
                    start_n = real_j * block_size_N
                    end_n = start_n + block_size_N
                    block_mask[b, h, start_m:end_m, start_n:end_n] = True
    block_mask.logical_and_(causal_mask)
    return block_mask


def plot_mask(mask, name, batch=0, head=0):
    import matplotlib.pyplot as plt
    import seaborn as sns
    plt.figure(figsize=(16, 12))
    plt.clf()
    mask = mask[batch, head].cpu().numpy()
    sns.heatmap(mask)
    plt.savefig(name)


@triton.jit
def triton_dense_fwd_kernel(
    Q, K, V, seqlens, sm_scale,
    Out,
    stride_qz, stride_qh, stride_qm, stride_qk,
    stride_kz, stride_kh, stride_kn, stride_kk,
    stride_vz, stride_vh, stride_vn, stride_vk,
    stride_oz, stride_oh, stride_om, stride_ok,
    Z, H, N_CTX,
    BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
    BLOCK_N: tl.constexpr,
    dtype: tl.constexpr,
):
    start_m = tl.program_id(0)
    off_hz = tl.program_id(1)

    seqlen = tl.load(seqlens + off_hz // H)
    if start_m * BLOCK_M >= seqlen:
        return

    qo_offset = (off_hz // H) * stride_qz + (off_hz % H) * stride_qh
    kv_offset = (off_hz // H) * stride_kz + (off_hz % H) * stride_kh
    Q_block_ptr = tl.make_block_ptr(
        base=Q + qo_offset,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_qm, stride_qk),
        offsets=(start_m * BLOCK_M, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0)
    )
    K_block_ptr = tl.make_block_ptr(
        base=K + kv_offset,
        shape=(BLOCK_DMODEL, N_CTX),
        strides=(stride_kk, stride_kn),
        offsets=(0, 0),
        block_shape=(BLOCK_DMODEL, BLOCK_N),
        order=(0, 1)
    )
    V_block_ptr = tl.make_block_ptr(
        base=V + kv_offset,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_vn, stride_vk),
        offsets=(0, 0),
        block_shape=(BLOCK_N, BLOCK_DMODEL),
        order=(1, 0)
    )
    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    # initialize pointer to m and l
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
    acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
    # scale sm_scale by log_2(e) and use
    # 2^x instead of exp in the loop because CSE and LICM
    # don't work as expected with `exp` in the loop
    qk_scale = sm_scale * 1.44269504
    # load q: it will stay in SRAM throughout
    q = tl.load(Q_block_ptr)
    q = (q * qk_scale).to(dtype)
    # loop over k, v and update accumulator
    lo = 0
    hi = (start_m + 1) * BLOCK_M
    m_mask = offs_m[:, None] < seqlen

    for start_n in range(lo, hi, BLOCK_N):
        n_mask = (start_n + offs_n[None, :]) <= offs_m[:, None]
        # -- load k, v --
        k = tl.load(K_block_ptr)
        v = tl.load(V_block_ptr)
        # -- compute qk --
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk = tl.where(m_mask & n_mask, qk, float("-inf"))
        qk += tl.dot(q, k)
        # -- compute scaling constant --
        m_i_new = tl.maximum(m_i, tl.max(qk, 1))
        alpha = tl.math.exp2(m_i - m_i_new)
        p = tl.math.exp2(qk - m_i_new[:, None])
        # -- scale and update acc --
        acc_scale = l_i * 0 + alpha  # workaround some compiler bug
        acc *= acc_scale[:, None]
        acc += tl.dot(p.to(dtype), v)
        # -- update m_i and l_i --
        l_i = l_i * alpha + tl.sum(p, 1)
        m_i = m_i_new
        # update pointers
        K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
        V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
    # write back O
    acc = tl.where(m_mask, acc / l_i[:, None], 0.0)
    O_block_ptr = tl.make_block_ptr(
        base=Out + qo_offset,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_om, stride_ok),
        offsets=(start_m * BLOCK_M, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0)
    )
    tl.store(O_block_ptr, acc.to(dtype))


def triton_dense_forward(q, k, v, seqlens, sm_scale, block_size_M=128, block_size_N=64) -> torch.Tensor:
    # shape constraints
    Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
    assert Lq == Lk and Lk == Lv
    assert Lk in {16, 32, 64, 128}
    o = torch.zeros_like(q)
    grid = (triton.cdiv(q.shape[2], block_size_M), q.shape[0] * q.shape[1], 1)
    num_warps = 4 if Lk <= 64 else 8  # 4
    dtype = tl.bfloat16 if q.dtype == torch.bfloat16 else tl.float16
    triton_dense_fwd_kernel[grid](
        q, k, v, seqlens, sm_scale,
        o,
        q.stride(0), q.stride(1), q.stride(2), q.stride(3),
        k.stride(0), k.stride(1), k.stride(2), k.stride(3),
        v.stride(0), v.stride(1), v.stride(2), v.stride(3),
        o.stride(0), o.stride(1), o.stride(2), o.stride(3),
        q.shape[0], q.shape[1], q.shape[2],
        BLOCK_M=block_size_M, BLOCK_N=block_size_N,
        BLOCK_DMODEL=Lk,
        dtype=dtype,
        num_warps=num_warps, num_stages=4,
    )

    return o


def flash_attn_forward(q, k, v, seqlens, sm_scale, context_size) -> torch.Tensor:
    return flash_attn_varlen_func(
        q,
        k,
        v,
        cu_seqlens_q=seqlens,
        cu_seqlens_k=seqlens,
        max_seqlen_q=context_size,
        max_seqlen_k=context_size,
        dropout_p=0.0,
        softmax_scale=sm_scale,
        causal=True,
    )


def torch_forward(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    mask: torch.Tensor,
    sm_scale: float,
) -> torch.Tensor:
    p = torch.einsum(f'bhmk, bhnk -> bhmn', query, key) * sm_scale
    p = p.where(mask, -torch.inf)
    p_max = p.max(-1, keepdim=True).values
    p_max = torch.where(p_max < 0, 0.0, p_max)
    p_exp = torch.exp(p - p_max)
    s = p_exp / (p_exp.sum(-1, keepdim=True) + 1e-6)
    out = torch.einsum(f'bhmn, bhnk -> bhmk', s, value)
    return out


def profile(fn, total_flops, tag, warmup=25, rep=100):
    ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
    gflops = total_flops / ms * 1e-9
    print(f'{tag}: {ms:.3f} ms | {gflops:.3f} GFLOP/s')


def test_flash_attention(
    seqlens=None,
    dtype=torch.float16,
    device="cuda",
    torch_test=True,
    batch_size=4,
    num_heads=32,
    context_size=1024,
    head_dim=128,
    top_k=5,
    block_size_M=64,
    block_size_N=64,
):
    print('========================================')
    print(f'BATCH={batch_size}, N_CTX={context_size}, N_HEADS={num_heads}, D_HEAD={head_dim}')
    q = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device)
    k = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device)
    v = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device)
    if seqlens is None:
        seqlens = torch.randint(context_size // 2, context_size, (batch_size, ), dtype=torch.int32, device=device)
    else:
        seqlens = torch.tensor(seqlens, dtype=torch.int32, device=device)
    dense_mask_nnz = seqlens.to(torch.float32).square().sum().item() * num_heads / 2
    sm_scale = head_dim ** -0.5

    causal_mask = make_causal_mask(seqlens, device, context_size)
    if torch_test:
        ref_o_dense = torch_forward(q, k, v, causal_mask, sm_scale)

    block_index = torch_build_index(q, k, top_k, block_size_M, block_size_N)
    arange_M = torch.arange(block_index.shape[-2], device=device)
    block_index_mask = arange_M[None, None, :, None] * block_size_M >= block_index * block_size_N
    sparse_mask_nnz = block_index_mask.to(torch.float32).sum().item() * block_size_M * block_size_N
    print(f'block mask sparsity: {1 - sparse_mask_nnz / dense_mask_nnz}')
    torch_build_index_fn = lambda: torch_build_index(q, k, top_k, block_size_M, block_size_N)
    profile(torch_build_index_fn, 0., 'torch-index')

    if torch_test:
        block_mask = make_block_mask(block_index, causal_mask, device, block_size_M, block_size_N)
        ref_o_sparse = torch_forward(q, k, v, block_mask, sm_scale)

    triton_dense_fn = lambda: triton_dense_forward(q, k, v, seqlens, sm_scale)
    output = triton_dense_fn()
    if torch_test:
        torch.testing.assert_close(output, ref_o_dense, atol=1e-2, rtol=0)
    profile(triton_dense_fn, 2. * head_dim * dense_mask_nnz, 'triton-dense')

    triton_sparse_fn = lambda: triton_block_sparse_forward(q, k, v, seqlens, block_index, sm_scale, block_size_M, block_size_N)
    output = triton_sparse_fn()
    if torch_test:
        torch.testing.assert_close(output, ref_o_sparse, atol=1e-2, rtol=0)
    profile(triton_sparse_fn, 2. * head_dim * sparse_mask_nnz, 'triton-sparse')

    q = q.swapaxes(1, 2).contiguous()
    k = k.swapaxes(1, 2).contiguous()
    v = v.swapaxes(1, 2).contiguous()
    q = torch.concatenate([q[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)])
    k = torch.concatenate([k[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)])
    v = torch.concatenate([v[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)])
    seqlens = torch.nn.functional.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))

    flash_fn = lambda: flash_attn_forward(q, k, v, seqlens, sm_scale, context_size)
    output = flash_fn()
    output = torch.stack([
        torch.nn.functional.pad(
            output[seqlens[i]:seqlens[i + 1], :, :],
            (0, 0, 0, 0, 0, context_size + seqlens[i] - seqlens[i + 1])
        )
        for i in range(batch_size)
    ]).swapaxes(1, 2).contiguous()
    if torch_test:
        torch.testing.assert_close(output, ref_o_dense, atol=1e-2, rtol=0)
    profile(flash_fn, 2. * head_dim * dense_mask_nnz, 'flash-dense')
    print('========================================\n')


def block_sparse_attention(
    query: torch.Tensor,  # [BATCH, N_HEADS, N_CTX, D_HEAD]
    key: torch.Tensor,    # [BATCH, N_HEADS, N_CTX, D_HEAD]
    value: torch.Tensor,  # [BATCH, N_HEADS, N_CTX, D_HEAD]
    top_k: int,
    block_size_M: int = 64,
    block_size_N: int = 64,
):
    batch_size, num_heads, context_size, head_dim = query.shape
    pad = block_size_M - (query.shape[2] & (block_size_M - 1))
    query = torch.nn.functional.pad(query, [0, 0, 0, pad, 0, 0, 0, 0])
    key = torch.nn.functional.pad(key, [0, 0, 0, pad, 0, 0, 0, 0])
    value = torch.nn.functional.pad(value, [0, 0, 0, pad, 0, 0, 0, 0])
    seqlens = torch.tensor([context_size], dtype=torch.int32, device=query.device)
    sm_scale = head_dim ** -0.5
    block_index = torch_build_index(query, key, top_k, block_size_N, block_size_N)
    out = triton_block_sparse_forward(query, key, value, seqlens, block_index, sm_scale, block_size_M, block_size_N)
    return out[..., :context_size, :]