zero-shot-4 / app.py
micole66's picture
Create app.py
bf1110a
import gradio as gr
from transformers import AutoProcessor, AutoModel
processor = AutoProcessor.from_pretrained("flax-community/clip-rsicd-v2")
model = AutoModel.from_pretrained("flax-community/clip-rsicd-v2")
def calculate_score(image, text):
labels = text.split(";")
labels = [l.strip() for l in labels]
labels = list(filter(None, labels))
if len(labels) == 0:
return dict()
inputs = processor(text=labels, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image.detach().numpy()
results_dict = {
label: score / 100.0 for label, score in zip(labels, logits_per_image[0])
}
return results_dict
if __name__ == "__main__":
cat_example = [
"cat.jpg",
"a cat stuck in a door; a cat in the air; a cat sitting; a cat standing; a cat is entering the matrix; a cat is entering the void",
]
demo = gr.Interface(
fn=calculate_score,
inputs=["image", "text"],
outputs="label",
examples=[cat_example],
allow_flagging="never",
description="# CLIP Score",
article="Calculate the [CLIP](https://openai.com/blog/clip/) score of a given image and text",
cache_examples=True,
)
demo.launch()