Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoProcessor, AutoModel | |
processor = AutoProcessor.from_pretrained("flax-community/clip-rsicd-v2") | |
model = AutoModel.from_pretrained("flax-community/clip-rsicd-v2") | |
def calculate_score(image, text): | |
labels = text.split(";") | |
labels = [l.strip() for l in labels] | |
labels = list(filter(None, labels)) | |
if len(labels) == 0: | |
return dict() | |
inputs = processor(text=labels, images=image, return_tensors="pt", padding=True) | |
outputs = model(**inputs) | |
logits_per_image = outputs.logits_per_image.detach().numpy() | |
results_dict = { | |
label: score / 100.0 for label, score in zip(labels, logits_per_image[0]) | |
} | |
return results_dict | |
if __name__ == "__main__": | |
cat_example = [ | |
"cat.jpg", | |
"a cat stuck in a door; a cat in the air; a cat sitting; a cat standing; a cat is entering the matrix; a cat is entering the void", | |
] | |
demo = gr.Interface( | |
fn=calculate_score, | |
inputs=["image", "text"], | |
outputs="label", | |
examples=[cat_example], | |
allow_flagging="never", | |
description="# CLIP Score", | |
article="Calculate the [CLIP](https://openai.com/blog/clip/) score of a given image and text", | |
cache_examples=True, | |
) | |
demo.launch() |