import gradio as gr import modin.pandas as pd import torch import time from optimum.intel import OVStableDiffusionXLPipeline import numpy as np from PIL import Image from diffusers import AutoPipelineForImage2Image from diffusers.utils import load_image import math from DeepCache import DeepCacheSDHelper from scheduling_tcd import TCDScheduler adapter_id = "latent-consistency/lcm-lora-sdv1-5" device = "cuda" if torch.cuda.is_available() else "cpu" # helper = DeepCacheSDHelper(pipe=pipe) # helper.set_params( # cache_interval=3, # cache_branch_id=0, # ) # helper.enable() # pipe.compile() def resize(value,img): img = Image.open(img) img = img.resize((value,value)) return img def infer(model_id,source_img, prompt, steps, seed, Strength): pipe = OVStableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float16, export=True) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo") pipe = pipe.to(device) pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) tcd_lora_id = "h1t/TCD-SDXL-LoRA" pipe.load_lora_weights(tcd_lora_id) pipe.fuse_lora() start_time = time.time() generator = torch.Generator(device).manual_seed(seed) if int(steps * Strength) < 1: steps = math.ceil(1 / max(0.10, Strength)) source_image = resize(512, source_img) source_image.save('source.png') image = pipe(prompt, image=source_image, strength=Strength, guidance_scale=0.0, num_inference_steps=steps).images[0] end_time = time.time() elapsed_time = end_time - start_time print("η”Ÿζˆζ—Άι—΄",elapsed_time) return image gr.Interface(fn=infer, inputs=[ gr.Text(value="Lykon/dreamshaper-xl-v2-turbo", label="Checkpoint"), gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Raw Image."), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'), gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), gr.Slider(label='Strength', minimum = 0.1, maximum = 1, step = .05, value = .5)], outputs='image', title = "Stable Diffusion XL Turbo Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL Turbo see https://huggingface.co./stabilityai/sdxl-turbo

Upload an Image, Use your Cam, or Paste an Image. Then enter a Prompt, or let it just do its Thing, then click submit. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: Manjushri").queue(max_size=10).launch()