## Setup # Import the necessary Libraries import json import tiktoken import pandas as pd from openai import OpenAI from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyPDFDirectoryLoader from langchain_community.embeddings.sentence_transformer import ( SentenceTransformerEmbeddings ) from langchain_community.vectorstores import Chroma import os import uuid import joblib import json import gradio as gr from dotenv import load_dotenv from huggingface_hub import CommitScheduler from pathlib import Path # Create Client # load_dotenv() # os.environ['API_KEY_PROJ3'] = os.getenv('API_KEY_PROJ3') # Create Client client = OpenAI( base_url="https://api.endpoints.anyscale.com/v1", api_key=os.environ['Anyscale_Colab_key2'] ) # Define the embedding model and the vectorstore embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large') collection_name = 'collection' # Load the persisted vectorDB vectorstore_persisted = Chroma( collection_name=collection_name, persist_directory='./proj3_db', embedding_function=embedding_model ) retriever = vectorstore_persisted.as_retriever( search_type = 'similarity', search_kargs = {'k':5} ) # persisted_vectordb_location = './proj3_db' # Prepare the logging functionality log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent scheduler = CommitScheduler( repo_id="mgchavez/Finsights_Grey", repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2 ) # Define the Q&A system message qna_system_message = """ User input will have the context required by you to answer user questions. This context will begin with the token: ###Context The context contains references to specific portions of a document relevant to the user query. User questions will begin with the token: ###Question Please answer only using the context provided in the input. Do not mention anything about the context in your final answer. If the answer is not found in the context, respond "I don't know". """ # Define the user message template qna_user_message_template = """ ###Context Here are some documents that are relevant to the question mentioned below. {context} ###Question {question} """ # Define the predict function that runs when 'Submit' is clicked or when a API request is made def predict(user_input, company): filter = "dataset/"+company+"-10-k-2023.pdf" relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":filter}) # Create context_for_query context_for_query = ". ".join(relevant_document_chunks) # Create messages prompt = [ {'role': 'system', 'content': qna_system_message}, {'role': 'user', 'content': qna_user_message_template.format( context=context_for_query, question=user_input ) } ] # model_name = 'mlabonne/NeuralHermes-2.5-Mistral-7B' model_name = 'mistralai/Mixtral-8x7B-Instruct-v0.1' # model_name = 'thenlper/gte-large' # Get response from the LLM try: response = client.chat.completions.create( model=model_name, messages=prompt, temperature=0 ) prediction = response.choices[0].message.content.strip() except Exception as e: prediction = f'Sorry, I encountered the following error: \n {e}' # While the prediction is made, log both the inputs and outputs to a local log file # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel # access with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'user_input': user_input, 'retrieved_context': context_for_query, 'model_response': prediction } )) f.write("\n") return prediction # Set-up the Gradio UI # Add text box and radio button to the interface # The radio button is used to select the company 10k report in which the context needs to be retrieved. lst_companies = ['aws', 'google', 'IBM', 'Meta', 'msft'] textbox = gr.Textbox('Input user') company = gr.Radio(lst_companies, label='Company') model_output = gr.Label(label="Charge predictor") # Create the interface # For the inputs parameter of Interface provide [textbox,company] demo = gr.Interface( fn=predict, inputs=[textbox, company], outputs=model_output, title="Charge Predictor", description="This API allows you to predict the charge of insurace", allow_flagging="auto", concurrency_limit=8 ) demo.queue() demo.launch()