Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -29,6 +29,8 @@ load_dotenv()
|
|
29 |
|
30 |
os.environ['API_KEY_PROJ3'] = os.getenv('API_KEY_PROJ3')
|
31 |
|
|
|
|
|
32 |
client = OpenAI(
|
33 |
base_url="https://api.endpoints.anyscale.com/v1",
|
34 |
api_key=os.environ['API_KEY_PROJ3']
|
@@ -38,15 +40,20 @@ client = OpenAI(
|
|
38 |
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
39 |
|
40 |
# Load the persisted vectorDB
|
|
|
|
|
|
|
|
|
|
|
41 |
persisted_vectordb_location = './proj3_db'
|
42 |
|
43 |
# Prepare the logging functionality
|
44 |
|
45 |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
46 |
log_folder = log_file.parent
|
47 |
-
|
48 |
scheduler = CommitScheduler(
|
49 |
-
repo_id="
|
50 |
repo_type="dataset",
|
51 |
folder_path=log_folder,
|
52 |
path_in_repo="data",
|
@@ -76,3 +83,75 @@ Here are some documents that are relevant to the question mentioned below.
|
|
76 |
###Question
|
77 |
{question}
|
78 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
os.environ['API_KEY_PROJ3'] = os.getenv('API_KEY_PROJ3')
|
31 |
|
32 |
+
collection_name = 'collection'
|
33 |
+
|
34 |
client = OpenAI(
|
35 |
base_url="https://api.endpoints.anyscale.com/v1",
|
36 |
api_key=os.environ['API_KEY_PROJ3']
|
|
|
40 |
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
|
41 |
|
42 |
# Load the persisted vectorDB
|
43 |
+
vectorstore_persisted = Chroma(
|
44 |
+
collection_name=collection_name,
|
45 |
+
persist_directory='./proj3_db',
|
46 |
+
embedding_function=embedding_model
|
47 |
+
)
|
48 |
persisted_vectordb_location = './proj3_db'
|
49 |
|
50 |
# Prepare the logging functionality
|
51 |
|
52 |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
53 |
log_folder = log_file.parent
|
54 |
+
|
55 |
scheduler = CommitScheduler(
|
56 |
+
repo_id="---------",
|
57 |
repo_type="dataset",
|
58 |
folder_path=log_folder,
|
59 |
path_in_repo="data",
|
|
|
83 |
###Question
|
84 |
{question}
|
85 |
"""
|
86 |
+
|
87 |
+
# Define the predict function that runs when 'Submit' is clicked or when a API request is made
|
88 |
+
def predict(user_input,company):
|
89 |
+
|
90 |
+
filter = "dataset/"+company+"-10-k-2023.pdf"
|
91 |
+
relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":filter})
|
92 |
+
|
93 |
+
# Create context_for_query
|
94 |
+
context_for_query = ". ".join(relevant_document_chunks)
|
95 |
+
|
96 |
+
# Create messages
|
97 |
+
prompt = [
|
98 |
+
{'role': 'system', 'content': qna_system_message},
|
99 |
+
{'role': 'user', 'content': qna_user_message_template.format(
|
100 |
+
context=context_for_query,
|
101 |
+
question=user_input
|
102 |
+
)
|
103 |
+
}
|
104 |
+
]
|
105 |
+
model_name = 'mlabonne/NeuralHermes-2.5-Mistral-7B'
|
106 |
+
# Get response from the LLM
|
107 |
+
try:
|
108 |
+
response = client.chat.completions.create(
|
109 |
+
model=model_name,
|
110 |
+
messages=prompt,
|
111 |
+
temperature=0
|
112 |
+
)
|
113 |
+
|
114 |
+
prediction = response.choices[0].message.content.strip()
|
115 |
+
except Exception as e:
|
116 |
+
prediction = f'Sorry, I encountered the following error: \n {e}'
|
117 |
+
|
118 |
+
# While the prediction is made, log both the inputs and outputs to a local log file
|
119 |
+
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
120 |
+
# access
|
121 |
+
|
122 |
+
with scheduler.lock:
|
123 |
+
with log_file.open("a") as f:
|
124 |
+
f.write(json.dumps(
|
125 |
+
{
|
126 |
+
'user_input': user_input,
|
127 |
+
'retrieved_context': context_for_query,
|
128 |
+
'model_response': prediction
|
129 |
+
}
|
130 |
+
))
|
131 |
+
f.write("\n")
|
132 |
+
|
133 |
+
return prediction
|
134 |
+
|
135 |
+
# Set-up the Gradio UI
|
136 |
+
# Add text box and radio button to the interface
|
137 |
+
# The radio button is used to select the company 10k report in which the context needs to be retrieved.
|
138 |
+
lst_companies = ['aws', 'google', 'IBM', 'Meta', 'msft']
|
139 |
+
textbox = gr.Textbox('Input user')
|
140 |
+
company = gr.Radio('Company', lst_companies)
|
141 |
+
|
142 |
+
model_output = gr.Label(label="Charge predictor")
|
143 |
+
|
144 |
+
# Create the interface
|
145 |
+
# For the inputs parameter of Interface provide [textbox,company]
|
146 |
+
demo = gr.Interface(
|
147 |
+
fn=predict,
|
148 |
+
inputs=[textbox, company],
|
149 |
+
outputs=model_output,
|
150 |
+
title="Charge Predictor",
|
151 |
+
description="This API allows you to predict the charge of insurace",
|
152 |
+
allow_flagging="auto",
|
153 |
+
concurrency_limit=8
|
154 |
+
)
|
155 |
+
|
156 |
+
demo.queue()
|
157 |
+
demo.launch(share=False)
|