import torch from datasets import load_dataset import transformers from diffusers import StableDiffusionPipeline import gradio as gr from random import randrange import os MY_SECRET_TOKEN = os.environ.get('stable-diffusion') data = load_dataset("mfumanelli/movies-small") data = data['train'].to_pandas() model_id = 'CompVis/stable-diffusion-v1-4' device = torch.device('cpu' if not torch.cuda.is_available() else 'cuda') pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=MY_SECRET_TOKEN, revision='fp16') pipe = pipe.to(device) def infer(prompt, samples, steps, scale): generator = torch.Generator(device=device) if device.type == 'cuda': with torch.autocast(device.type): images_list = pipe( [prompt] * samples, num_inference_steps=steps, guidance_scale=scale, generator=generator, ) else: images_list = pipe( [prompt] * samples, num_inference_steps=steps, guidance_scale=scale, generator=generator, ) return images_list def generate_movie(): seed = randrange(data.shape[0]) plot = data.iloc[seed]["plot_synopsis_sum"] image = infer(plot, 1, 50, 7.5) return image["sample"][0], seed def movie_title(seed): return data.iloc[int(seed)]["title"] css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #iamge { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #iamge>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } """ with gr.Blocks(css=css) as demo: gr.HTML( """

Stable Diffusion Loves Cinema

Stable Diffusion is a state-of-the-art text-to-image model that generates images from text, in this demo it is used to generate movie scenes from their storyline.



Instructions: press the "Generate a movie scene!" button to generate an image and try to see if you can guess the movie. You can see if you guessed right by pressing the "Tell me the title" button.

""" ) with gr.Group(): with gr.Box(): with gr.Row().style(mobile_collapse=False, equal_height=True): b1 = gr.Button("Generate a movie scene!").style( margin=False, rounded=(False, True, True, False), ) b2 = gr.Button("Tell me the title").style( margin=False, rounded=(False, True, True, False), ) text = gr.Textbox(label="Title:") image = gr.Image( label="Generated images", show_label=False, elem_id="image" ).style(height="auto") seed = gr.Number(visible=False) b1.click(generate_movie, inputs=None, outputs=[image, seed]) b2.click(movie_title, inputs=seed, outputs=text) demo.launch()