import nltk; nltk.download('wordnet') #@title Load Model selected_model = 'character' # Load model import torch import PIL import numpy as np from PIL import Image from models import get_instrumented_model from decomposition import get_or_compute from config import Config import gradio as gr import numpy as np # Speed up computation torch.autograd.set_grad_enabled(False) torch.backends.cudnn.benchmark = True # Specify model to use config = Config( model='StyleGAN2', layer='style', output_class=selected_model, components=80, use_w=True, batch_size=5_000, # style layer quite small ) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") inst = get_instrumented_model(config.model, config.output_class, config.layer, torch.device(device), use_w=config.use_w) path_to_components = get_or_compute(config, inst) model = inst.model comps = np.load(path_to_components) lst = comps.files latent_dirs = [] latent_stdevs = [] load_activations = False for item in lst: if load_activations: if item == 'act_comp': for i in range(comps[item].shape[0]): latent_dirs.append(comps[item][i]) if item == 'act_stdev': for i in range(comps[item].shape[0]): latent_stdevs.append(comps[item][i]) else: if item == 'lat_comp': for i in range(comps[item].shape[0]): latent_dirs.append(comps[item][i]) if item == 'lat_stdev': for i in range(comps[item].shape[0]): latent_stdevs.append(comps[item][i]) def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None): # blockPrint() model.truncation = truncation if w is None: w = model.sample_latent(1, seed=seed).detach().cpu().numpy() w = [w]*model.get_max_latents() # one per layer else: w = [np.expand_dims(x, 0) for x in w] for l in range(start, end): for i in range(len(directions)): w[l] = w[l] + directions[i] * distances[i] * scale torch.cuda.empty_cache() #save image and display out = model.sample_np(w) final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS) if save is not None: if disp == False: print(save) final_im.save(f'out/{seed}_{save:05}.png') return final_im #@title Demo UI def generate_image(seed, truncation, monster, female, skimpy, light, bodysuit, bulky, human_head, start_layer, end_layer): seed = hash(seed) % 1000000000 scale = 1 params = {'monster': monster, 'female': female, 'skimpy': skimpy, 'light': light, 'bodysuit': bodysuit, 'bulky': bulky, 'human_head': human_head} param_indexes = {'monster': 0, 'female': 1, 'skimpy': 2, 'light': 4, 'bodysuit': 5, 'bulky': 6, 'human_head': 8} directions = [] distances = [] for k, v in params.items(): directions.append(latent_dirs[param_indexes[k]]) distances.append(v) style = {'description_width': 'initial'} return display_sample_pytorch(int(seed), truncation, directions, distances, scale, int(start_layer), int(end_layer), disp=False) truncation = gr.inputs.Slider(minimum=0, maximum=1, default=0.5, label="Truncation") start_layer = gr.inputs.Number(default=0, label="Start Layer") end_layer = gr.inputs.Number(default=14, label="End Layer") seed = gr.inputs.Textbox(default="0", label="Seed") slider_max_val = 20 slider_min_val = -20 slider_step = 1 monster = gr.inputs.Slider(label="Monsterfication", minimum=slider_min_val, maximum=slider_max_val, default=0) female = gr.inputs.Slider(label="Gender", minimum=slider_min_val, maximum=slider_max_val, default=0) skimpy = gr.inputs.Slider(label="Amount of Clothing", minimum=slider_min_val, maximum=slider_max_val, default=0) light = gr.inputs.Slider(label="Brightness", minimum=slider_min_val, maximum=slider_max_val, default=0) bodysuit = gr.inputs.Slider(label="Bodysuit", minimum=slider_min_val, maximum=slider_max_val, default=0) bulky = gr.inputs.Slider(label="Bulkiness", minimum=slider_min_val, maximum=slider_max_val, default=0) human_head = gr.inputs.Slider(label="Head", minimum=slider_min_val, maximum=slider_max_val, default=0) scale = 1 inputs = [seed, truncation, monster, female, skimpy, light, bodysuit, bulky, human_head, start_layer, end_layer] description = "Change the seed number to generate different character design. Made by @mfrashad. For more details on how to build this, visit the repo. Please give a star if you find it useful :)" gr.Interface(generate_image, inputs, ["image"], description=description, live=True, title="CharacterGAN").launch()