File size: 1,266 Bytes
66b4965 e016664 66b4965 e016664 66b4965 3607302 66b4965 e016664 66b4965 e016664 66b4965 e016664 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
import gradio as gr
import pandas as pd
from css_html_js import custom_css
TITLE = """<h1 align="center" id="space-title">π²πΎ Malaysian Embedding Leaderboard</h1>"""
INTRODUCTION_TEXT = """
π The π²πΎ Malaysian Embedding Leaderboard aims to track, rank and evaluate Top-k retrieval using embedding models. All notebooks at https://github.com/mesolitica/embedding-benchmarks, feel free to submit your own score at https://huggingface.co./spaces/mesolitica/Malaysian-Embedding-Leaderboard/discussions with link to the notebook.
## Dataset
π We evaluate models based on 4 datasets,
1. CrossRef Melayu related DOI, https://huggingface.co./datasets/mesolitica/malaysian-ultrachat/resolve/main/ultrachat-crossref-melayu-malay.jsonl
2. Epenerbitan, https://huggingface.co./datasets/mesolitica/malaysian-ultrachat/resolve/main/ultrachat-epenerbitan-malay.jsonl
3. gov.my PDF files, https://huggingface.co./datasets/mesolitica/malaysian-ultrachat/resolve/main/ultrachat-gov.my.jsonl
4. lom.agc.gov.my PDF files, https://huggingface.co./datasets/mesolitica/malaysian-ultrachat/resolve/main/ultrachat-lom-agc.jsonl
"""
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
demo.launch() |