|
import os |
|
os.system("pip install gradio==2.8.0b22") |
|
os.system("pip install -r requirements.txt") |
|
os.system("pip freeze") |
|
from huggingface_hub import from_pretrained_keras |
|
import numpy as np |
|
import pandas as pd |
|
import tensorflow as tf |
|
import tensorflow_hub as hub |
|
import tensorflow_text as text |
|
from tensorflow import keras |
|
import gradio as gr |
|
|
|
|
|
def make_bert_preprocessing_model(sentence_features, seq_length=128): |
|
"""Returns Model mapping string features to BERT inputs. |
|
|
|
Args: |
|
sentence_features: A list with the names of string-valued features. |
|
seq_length: An integer that defines the sequence length of BERT inputs. |
|
|
|
Returns: |
|
A Keras Model that can be called on a list or dict of string Tensors |
|
(with the order or names, resp., given by sentence_features) and |
|
returns a dict of tensors for input to BERT. |
|
""" |
|
|
|
input_segments = [ |
|
tf.keras.layers.Input(shape=(), dtype=tf.string, name=ft) |
|
for ft in sentence_features |
|
] |
|
|
|
|
|
bert_preprocess = hub.load(bert_preprocess_path) |
|
tokenizer = hub.KerasLayer(bert_preprocess.tokenize, |
|
name="tokenizer") |
|
|
|
segments = [tokenizer(s) for s in input_segments] |
|
|
|
truncated_segments = segments |
|
|
|
packer = hub.KerasLayer(bert_preprocess.bert_pack_inputs, |
|
arguments=dict(seq_length=seq_length), |
|
name="packer") |
|
model_inputs = packer(truncated_segments) |
|
return keras.Model(input_segments, model_inputs) |
|
|
|
|
|
def preprocess_image(image_path, resize): |
|
extension = tf.strings.split(image_path)[-1] |
|
|
|
image = tf.io.read_file(image_path) |
|
if extension == b"jpg": |
|
image = tf.image.decode_jpeg(image, 3) |
|
else: |
|
image = tf.image.decode_png(image, 3) |
|
|
|
image = tf.image.resize(image, resize) |
|
return image |
|
|
|
def preprocess_text(text_1, text_2): |
|
|
|
text_1 = tf.convert_to_tensor([text_1]) |
|
text_2 = tf.convert_to_tensor([text_2]) |
|
|
|
output = bert_preprocess_model([text_1, text_2]) |
|
|
|
output = {feature: tf.squeeze(output[feature]) for feature in bert_input_features} |
|
|
|
return output |
|
|
|
def preprocess_text_and_image(sample, resize): |
|
|
|
image_1 = preprocess_image(sample['image_1_path'], resize) |
|
image_2 = preprocess_image(sample['image_2_path'], resize) |
|
|
|
text = preprocess_text(sample['text_1'], sample['text_2']) |
|
|
|
return {"image_1": image_1, "image_2": image_2, "text": text} |
|
|
|
|
|
def classify_info(image_1, text_1, image_2, text_2): |
|
|
|
sample = dict() |
|
sample['image_1_path'] = image_1 |
|
sample['image_2_path'] = image_2 |
|
sample['text_1'] = text_1 |
|
sample['text_2'] = text_2 |
|
|
|
dataframe = pd.DataFrame(sample, index=[0]) |
|
|
|
ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), [0])) |
|
ds = ds.map(lambda x, y: (preprocess_text_and_image(x, resize), y)).cache() |
|
batch_size = 1 |
|
auto = tf.data.AUTOTUNE |
|
ds = ds.batch(batch_size).prefetch(auto) |
|
output = model.predict(ds) |
|
|
|
outputs = dict() |
|
|
|
outputs[labels[0]] = float(output[0][0]) |
|
outputs[labels[1]] = float(output[0][1]) |
|
outputs[labels[2]] = float(output[0][2]) |
|
|
|
return outputs |
|
|
|
|
|
model = from_pretrained_keras("keras-io/multimodal-entailment") |
|
resize = (128, 128) |
|
bert_input_features = ["input_word_ids", "input_type_ids", "input_mask"] |
|
bert_model_path = ("https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1") |
|
bert_preprocess_path = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3" |
|
bert_preprocess_model = make_bert_preprocessing_model(['text_1', 'text_2']) |
|
|
|
labels = {0: "Contradictory", 1: "Implies", 2: "No Entailment"} |
|
|
|
block = gr.Blocks() |
|
|
|
examples = [['examples/image_1.png', '#IndiaFightsCorona:\n\nNearly 4.5 million beneficiaries vaccinated against #COVID19 in 19 days.\n\nIndia is the fastest country to cross landmark of vaccinating 4 million beneficiaries in merely 18 days.\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/beGDQfd06S', 'examples/image_2.jpg', '#IndiaFightsCorona:\n\nIndia has become the fastest nation to reach 4 million #COVID19 vaccinations ; it took only 18 days to administer the first 4 million #vaccines\n\n:@MoHFW_INDIA Secretary\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/9GENQlqtn3']] |
|
|
|
|
|
with block: |
|
gr.Markdown("Multimodal Entailment") |
|
with gr.Tab("Hypothesis"): |
|
with gr.Row(): |
|
gr.Markdown("Upload hypothesis image:") |
|
image_1 = gr.inputs.Image(type="filepath") |
|
text_1 = gr.inputs.Textbox(lines=5) |
|
|
|
with gr.Tab("Premise"): |
|
with gr.Row(): |
|
gr.Markdown("Upload premise image:") |
|
image_2 = gr.inputs.Image(type="filepath") |
|
text_2 = gr.inputs.Textbox(lines=5) |
|
|
|
|
|
run = gr.Button("Run") |
|
label = gr.outputs.Label() |
|
run.click(classify_info, inputs=[image_1, text_1, image_2, text_2], outputs=label) |
|
|
|
block.launch() |
|
|