import tempfile import time import os from utils import compute_sha1_from_file from langchain.schema import Document import streamlit as st from langchain.text_splitter import RecursiveCharacterTextSplitter from stats import add_usage def process_file(vector_store, file, loader_class, file_suffix, stats_db=None): try: print("=== Starting file processing ===") documents = [] file_name = file.name file_size = file.size if st.secrets.self_hosted == "false": if file_size > 1000000: st.error("File size is too large. Please upload a file smaller than 1MB or self host.") return dateshort = time.strftime("%Y%m%d") # Load documents with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file: tmp_file.write(file.getvalue()) tmp_file.flush() loader = loader_class(tmp_file.name) documents = loader.load() file_sha1 = compute_sha1_from_file(tmp_file.name) os.remove(tmp_file.name) chunk_size = st.session_state['chunk_size'] chunk_overlap = st.session_state['chunk_overlap'] text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap) documents = text_splitter.split_documents(documents) # Create documents with metadata and validate content docs_with_metadata = [] for i, doc in enumerate(documents): try: # Validate content is string and not empty if not isinstance(doc.page_content, str): print(f"Skipping document {i}: Invalid content type {type(doc.page_content)}") continue if not doc.page_content.strip(): print(f"Skipping document {i}: Empty content") continue # Basic content validation content = doc.page_content.strip() if len(content) < 10: # Skip very short contents print(f"Skipping document {i}: Content too short ({len(content)} chars)") continue new_doc = Document( page_content=content, metadata={ "file_sha1": file_sha1, "file_size": file_size, "file_name": file_name, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap, "date": dateshort, "user": st.session_state["username"] } ) docs_with_metadata.append(new_doc) except Exception as e: print(f"Error processing document {i}: {str(e)}") continue print(f"Processed {len(docs_with_metadata)} valid documents") # Process in smaller batches BATCH_SIZE = 50 for i in range(0, len(docs_with_metadata), BATCH_SIZE): batch = docs_with_metadata[i:i + BATCH_SIZE] try: print(f"Processing batch {i//BATCH_SIZE + 1} of {(len(docs_with_metadata) + BATCH_SIZE - 1)//BATCH_SIZE}") # Debug embedding process texts = [doc.page_content for doc in batch] metadatas = [doc.metadata for doc in batch] print(f"Sample text from batch (first 200 chars): {texts[0][:200] if texts else 'No texts'}") # Try to get embeddings directly first try: embeddings = vector_store._embedding.embed_documents(texts) print(f"Successfully generated embeddings for batch. First embedding shape: {len(embeddings[0]) if embeddings else 'No embeddings'}") except Exception as e: print(f"Embedding error: {str(e)}") print(f"Embedding type: {type(vector_store._embedding).__name__}") # You might want to add retry logic here raise vector_store.add_documents(batch) print(f"Successfully added batch to vector store") except Exception as e: print(f"Error processing batch {i//BATCH_SIZE + 1}: {str(e)}") print(f"First document in failed batch (truncated):") if batch: print(batch[0].page_content[:200]) raise if stats_db: add_usage(stats_db, "embedding", "file", metadata={ "file_name": file_name, "file_type": file_suffix, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap }) except Exception as e: print(f"\n=== General Processing Error ===") print(f"Exception occurred during file processing: {str(e)}") print(f"Exception type: {type(e).__name__}") raise